

# A40D and A40DX Self-Propelled Windrower Auger Header

Operator's Manual
215345 Revision A
Original Instruction

#### MacDon A40D Auger Header



Published: May 2020

#### © 2020 MacDon Industries, Ltd.

The information in this publication is based on the information available and in effect at the time of printing. MacDon Industries, Ltd. makes no representation or warranty of any kind, whether expressed or implied, with respect to the information in this publication. MacDon Industries, Ltd. reserves the right to make changes at any time without notice.

## **EC Declaration of Conformity**



## EC Declaration of Conformity



MacDon Industries Ltd. 680 Moray Street, Winnipeg, Manitoba, Canada

[2] Auger Header

[3] MacDon A Series

[4] As Per Shipping Document

[5] July 26, 2019

=1

Christoph Martens Product Integrity

FIN

We, [1]

Declare, that the product:

Machine Type: [2]

Name & Model: [3]

Serial Number(s): [4]

fulfils all the relevant provisions of the Directive 2006/42/FC.

Harmonized standards used, as referred to in Article

EN ISO 4254-1:2013 EN ISO 4254-7:2009

Place and date of declaration: [5]

Identity and signature of the person empowered to draw up the declaration: [6]

Name and address of the person authorized to

Benedikt von Riedesel General Manager, MacDon Europe GmbH Hagenauer Straße 59 65203 Wiesbaden (Germany) bvonriedesel@macdon.com

декларираме, че следният продукт:

ип машина: [2

Ние, [1]

Наименование и модел: [3]

Сериен номер(а) [4]

отговаря на всички приложими разпоредби на директива 2006/42/EO.

Използвани са следните хармонизирани

EN ISO 4254-1:2013 EN ISO 4254-7:2009

Място и дата на декларацията: [5]

Име и подпис на лицето, упълномощено да изготви декларацията: [6]

Име и адрес на лицето, упълномощено да състави техническия файл:

Бенедикт фон Рийдезел Управител, MacDon Europe GmbH Hagenauer Straße 59 65203 Wiesbaden (Германия) bvonriedesel@macdon.com My, [1]

Prohlašujeme, že produkt:

Typ zařízení: [2]

Název a model: [3]

Sériové(á) číslo)a): [4]

splňuje všechna relevantní ustanovení směrnice

Byly použity harmonizované standardy, jak je uve-

EN ISO 4254-1:2013 EN ISO 4254-7:2009

prohlášení: [6]

Místo a datum prohlášení: [5]
Identita a podpis osoby oprávněné k vydání

Jméno a adresa osoby oprávněné k vyplnění techni ckého souboru:

Benedikt von Riedesel generální ředitel, MacDon Europe GmbH Hagenauer Straße 59 65203 Wiesbaden (Německo) bvonriedesel@macdon.com DA

Vi, [1]

erklærer, at prduktet:

Maskintype [2]

Navn og model: [3]

rienummer (-numre): [4]

Opfylder alle bestemmelser i direktiv 2006/42/EF.

Anvendte harmoniserede standarder, som henvist

EN ISO 4254-1:2013 EN ISO 4254-7:2009

ed og dato for erklæringen: [5]

Identitet på og underskrift fra den person, som er bemyndiget til at udarbejde erklæringen: [6]

Navn og adresse på den person, som er bemyndiget til at udarbejde den tekniske fil:

Benedikt von Riedesel Direktør, MacDon Europe GmbH Hagenauer Straße 59 D-65203 Wiesbaden (Tyskland) bvonriedesel@macdon.com

DE

Vir, [1]

Erklären hiermit, dass das Produkt:

Maschinentyp: [2]

Name & Modell: [3]

Seriennummer (n): [4]

alle relevanten Vorschriften der Richtlinie 2006/42/EG erfüllt.

Harmonisierte Standards wurden, wie in folgenden Artikeln angegeben, verwendet 7(2):

EN ISO 4254-1:2013 EN ISO 4254-7:2009

Ort und Datum der Erklärung: [5]

Name und Unterschrift der Person, die dazu befugt ist, die Erklärung auszustellen: [6]

Name und Anschrift der Person, die dazu berechtigt ist, die technischen Unterlagen zu erstellen:

Benedikt von Riedesel General Manager, MacDon Europe GmbH Hagenauer Straße 59 65203 Wiesbaden bvonriedesel@macdon.com ES

declaramos que el producto:

Tipo de máquina: [2]

Nosotros [1]

Nombre y modelo: [3]

Números de serie: [4]

cumple con todas las disposiciones pertinentes de la directriz 2006/42/EC.

Se utilizaron normas armonizadas, según lo dispuesto en el artículo 7(2):

EN ISO 4254-1:2013 EN ISO 4254-7:2009 Lugar y fecha de la declaración: [5]

Identidad y firma de la persona facultada para draw redactar la declaración: [6]

Nombre y dirección de la persona autorizada para elaborar el expediente técnico:

Benedikt von Riedesel Gerente general - MacDon Europe GmbH Hagenauer Straße 59 65203 Wiesbaden (Alemania) bvonriedesel@macdon.com E

Meie, [1] deklareerime, et toode

Seadme tüüp: [2] Nimi ja mudel: [3]

Seerianumbrid: [4]

nimi ja aadress:

vastab kõigile direktiivi 2006/42/EÜ asjakohastele sätetele.

Kasutatud on järgnevaid harmoniseeritud stand-

ardeid, millele on viidatud ka punktis 7(2):

EN ISO 4254-1:2013

EN ISO 4254-7:2009 Deklaratsiooni koht ja kuupäev: [5]

Deklaratsiooni koostamiseks volitatud isiku nimi ja allkiri: [6] Tehnilise dokumendi koostamiseks volitatud isiku

Benedikt von Riedesel Peadirektor, MacDon Europe GmbH Hagenauer Straße 59 65203 Wiesbaden (Saksamaa)

bvonriedesel@macdon.com

FF

Nous soussignés, [1]

Type de machine : [2]

Nom et modèle : [3]

Numéro(s) de série : [4]

Est conforme à toutes les dispositions pertinentes de la directive 2006/42/EC.

Utilisation des normes harmonisées, comme indiqué dans l'Article 7(2):

EN ISO 4254-1:2013 EN ISO 4254-7:2009 Lieu et date de la déclaration : [5]

Identité et signature de la personne ayant reçu le pouvoir de rédiger cette déclaration : [6]

Nom et adresse de la personne autorisée à constituer le dossier technique :

Benedikt von Riedesel Directeur général, MacDon Europe GmbH Hagenauer Straße 59 65203 Wiesbaden (Allemagne) bvonriedesel@macdon.com

The Harvesting Specialists

MacDon

215345 İ Revision A

## EC Declaration of Conformity

IT

Noi, [1]

Dichiariamo che il prodotto:

Tipo di macchina: [2]

Nome e modello: [3]

Numero(i) di serie: [4]

soddisfa tutte le disposizioni rilevanti della direttiva 2006/42/CE.

Utilizzo degli standard armonizzati, come indicato nell'Articolo 7(2):

EN ISO 4254-1:2013

EN ISO 4254-7:2009

Luogo e data della dichiarazione: [5]

Nome e firma della persona autorizzata a redigere la dichiarazione: [6]

Nome e persona autorizzata a compilare il file tecnico:

Benedikt von Riedesel

General Manager, MacDon Europe GmbH

Ezennel kijelentjük, hogy a következő termék:

Gép típusa: [2]

Név és modell: [3]

Szériaszám(ok): [4]

teljesíti a következő irányelv összes vonatkozó előírásait: 2006/42/EK.

Az alábbi harmonizált szabványok kerültek alkalmazásra a 7(2) cikkely szerint:

FN ISO 4254-1:2013

A nyilatkozattétel ideie és helve: [5]

Azon személy kiléte és aláírása, aki jogosult a nvilatkozat elkészítésére: [6]

Azon személy neve és aláírása, aki felhatalmazott a műszaki dokumentáció

összeállítására

Benedikt von Riedesel

Mes, [1]

Pareiškiame, kad šis produktas:

Mašinos tipas: [2]

Pavadinimas ir modelis: [3]

Seriios numeris (-iai): [4]

atitinka taikomus reikalavimus pagal Direktyva

Naudojami harmonizuoti standartai, kai nurodoma straipsnyje 7(2):

FN ISO 4254-1-2013

EN ISO 4254-7:2009

Deklaracijos vieta ir data: [5]

Asmens tapatybės duomenys ir parašas asmens, įgalioto sudaryti šią deklaraciją: [6]

Vardas ir pavardė asmens, kuris įgaliotas sudaryti šį techninį failą:

Benedikt von Riedesel

Generalinis direktorius, MacDon Europe GmbH

Deklarējam, ka produkts:

Mašīnas tips: [2] Nosaukums un modelis: [3]

Atbilst visām būtiskajām Direktīvas 2006/42/EK

Piemēroti šādi saskaņotie standarti , kā minēts

FN ISO 4254-1:2013

EN ISO 4254-7:2009

Deklarācijas parakstīšanas vieta un datums: [5] Tās personas vārds, uzvārds un paraksts, kas ir pilnvarota sagatavot šo deklarāciju: [6]

Tās personas vārds, uzvārds un adrese, kas ir pilnvarota sastādīt tehnisko dokumentāciju:

Ģenerāldirektors, MacDon Europe GmbH

Wii. [1]

Verklaren dat het product:

Machinetype: [2]

Naam en model: [3]

Serienummer(s): [4]

voldoet aan alle relevante bepalingen van de Richtlijn 2006/42/EC.

Geharmoniseerde normen toegepast, zoals vermeld in Artikel 7(2):

EN ISO 4254-1:2013

EN ISO 4254-7:2009

Plaats en datum van verklaring: [5] Naam en handtekening van de bevoegde

persoon om de verklaring op te stellen: [6] Naam en adres van de geautoriseerde persoon

om het technisch dossier samen te stellen

Benedikt von Riedesel Algemeen directeur, MacDon Europe GmbH

My niżej podpisani, [1] Oświadczamy, że produkt:

Typ urządzenia: [2]

Nazwa i model: [3]

Numer seryjny/numery seryjne: [4]

spełnia wszystkie odpowiednie przepisy dyrektywy 2006/42/WE.

Zastosowaliśmy następujące (zharmonizowane) normy zgodnie z artykułem 7(2):

EN ISO 4254-1:2013

Data i miejsce oświadczenia: [5]

Imię i nazwisko oraz podpis osoby upoważnionej do przygotowania deklaracji: [6]

Imie i nazwisko oraz adres osoby upoważnione do przygotowania dokumentacji technicznej:

Renedikt von Riedesel

Dyrektor generalny, MacDon Europe GmbH

Declaramos, que o produto

Tipo de máquina: [2]

Nome e Modelo: [3]

Número(s) de Série: [4]

cumpre todas as disposições relevantes da Directiva 2006/42/CE.

Normas harmonizadas aplicadas, conforme referido no Artigo 7(2):

EN ISO 4254-1:2013

FN ISO 4254-7:2009

Local e data da declaração: [5]

Identidade e assinatura da pessoa autorizada a elaborar a declaração: [6]

Nome e endereço da pessoa autorizada a

Benedikt von Riedese Gerente Geral, MacDon Europa Ltda. RO

Declarăm, că următorul produs:

Benedikts fon Ridizels

Tipul masinii: [2]

Noi, [1]

Număr (numere) serie: [4]

corespunde tuturor dispozițiilor esențiale ale directivei 2006/42/EC.

Au fost aplicate următoarele standarde armonizate conform articolului 7(2):

FN ISO 4254-1-2013

Data si locul declaratiei: [5]

Identitatea și semnătura persoanei

împuternicite pentru întocmirea declarației: [6] Numele si semnătura persoanei autorizate

pentru întocmirea cărții tehnice: Renedikt von Riedesel

Manager General, MacDon Europe GmbH

Mi [1]

Tip mašine: [2]

Serijski broj(evi): [4]

2006/42/FC.

Identitet i potpis lica ovlašæenog za sastavljan-

Ime i adresa osobe ovlašæene za sastavljanje tehnièke datoteke:

Intygar att produkten:

Maskintyp: [2]

uppfyller alla relevanta villkor i direktivet

Harmonierade standarder används, såsom

anges i artikel 7(2):

Plats och datum för intyget: [5]

Namn och adress för person behörig att upprätta den tekniska dokumentationen:

Vrsta stroja: [2]

ustreza vsem zadevnim določbam Direktive

Uporabljeni usklajeni standardi, kot je navedeno v členu 7(2):

EN ISO 4254-1:2013 FN ISO 4254-7:2009

Istovetnost in podpis osebe, opolnomočene za

Renedikt von Riedesel Generalni direktor, MacDon Europe GmbH

My, [1]

týmto prehlasujeme, že tento výrobok: Typ zariadenia: [2]

toto prehlásenie: [6]

Výrobné číslo: [4] spĺňa príslušné ustanovenia a základné požiada

vkv smernice č. 2006/42/ES. Použité harmonizované normy, ktoré sa

uvádzajú v Článku č. 7(2): FN ISO 4254-1:2013 FN ISO 4254-7:2009

Miesto a dátum prehlásenia: [5] Meno a podpis osoby oprávnenej vypracovať

Meno a adresa osoby oprávnenej zostaviť technický súbor:

Benedikt von Riedesel Generálny riaditeľ MacDon Europe GmbH

Izjavljujemo da proizvod

Naziv i model: [3]

Ispunjava sve relevantne odredbe direktive

Korišæeni su usklađeni standardi kao što je navedeno u èlanu 7(2):

EN ISO 4254-7:2009 Datum i mesto izdavania deklaracije: [5]

Benedikt von Riedesel

je deklaracije: [6]

Vi. [1]

Namn och modell: [3] Serienummer: [4]

2006/42/EG.

EN ISO 4254-1:2013 FN ISO 4254-7:2009

befogenhet att upprätta intyget: [6]

Benedikt von Riedesel Administrativ chef, MacDon Europe GmbH

Mi, [1]

izjavljamo, da izdelek

Serijska/-e številka/-e: [4]

2006/42/ES.

Kraj in datum izjave: [5]

pripravo izjave: [6] lme in naslov osebe, pooblaščene za pripravo tehnične datoteke

215345 ii Revision A

#### Introduction

This manual describes the operating and maintenance procedures for MacDon model A40D and A40DX Windrower Auger Headers, including a Grass Seed version.

An A40D Auger Header is factory-configured to connect to an M Series Windrower, while an A40DX Auger Header is factory-configured to connect to an M1 Series Windrower.

#### NOTE:

For A30S and A30D, the term "auger header" now exclusively refers to augers installed on a windrower.

#### NOTE:

**STANDARD** A40D headers (model year 2017 and later) can be converted to A40DX using conversion kit MD #B5998. Installation of the supplied Reel Speed Sensor kit (MD #318022) is **NOT** required. **GRASS SEED** A40D headers (model year 2017 and later) can be converted to A40DX using conversion kit MD #B6384. Installation of the supplied Reel Speed Sensor kit (MD #318022) is **REQUIRED**. Both standard and grass seed auger headers manufactured in model year 2016 and prior **CANNOT** be converted to A40DX headers.

| Model       | Configuration         | Knife  | Size m (ft.)                          | Features                                                            |
|-------------|-----------------------|--------|---------------------------------------|---------------------------------------------------------------------|
| A40D, A40DX | Windrower header only | Double | 4.3, 4.9, and 5.5<br>(14, 16, and 18) | Separate hydraulic auger, knife, and reel drives: grass seed option |

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise machine function and machine life and may result in a hazardous situation.

Use this manual as your first source of information about the machine. Use the Table of Contents and the Index to guide you to specific topics. Study the Table of Contents to familiarize yourself with how the information is organized. If you follow the instructions provided here, your header/pull-type will work well for many years.

Keep this manual handy for frequent reference, and to pass on to new Operators or Owners. Contact your Dealer if you need assistance, information, or additional copies of this manual.

CAREFULLY READ THE INFORMATION PROVIDED IN THIS MANUAL BEFORE ATTEMPTING TO OPERATE OR MAINTAIN AN A40D OR A40DX AUGER HEADER.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- Improper maintenance or neglect
- Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer's instructions

#### **Conventions**

The following conventions are used in this document:

- Right and left are determined from the operator's position. The front of the header is the side that faces the crop; the back of the header is the side that connects to the windrower.
- Unless otherwise noted, use the standard torque values provided in Chapter 8.1 Recommended Torques, page 205.

#### NOTE:

Keep your MacDon publications up-to-date. The most current version can be downloaded from our website (www.macdon. com) or from our Dealer-only site (https://portal.macdon.com) (login required).

#### NOTE:

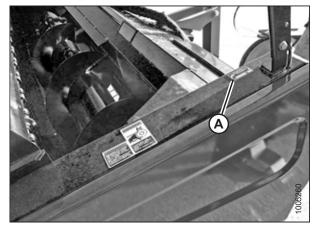
A Russian translation of this manual can be ordered from MacDon, downloaded from the MacDon Dealer Portal (https://portal.macdon.com) (login required), or downloaded from the MacDon international website (http://www.macdon.com/world).

## **List of Revisions**

The following list provides an account of major changes from the previous version of this document.

| Section                                                           | Summary of Change                                                                                                                                                                                 | Internal Use<br>Only   |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Inside front cover                                                | Added copyright and disclaimer.                                                                                                                                                                   | Tech Pubs              |
| EC Declaration of Conformity, page i                              | Updated the Declaration of Conformity.                                                                                                                                                            | Tech Pubs              |
| 3.3.1 Attaching A40D Header to M100 or<br>M105 Windrower, page 31 | Replaced the following CAUTION with the following WARNING for consistency across manuals:                                                                                                         | Tech Pubs              |
|                                                                   | CAUTION: To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.                                    |                        |
|                                                                   | WARNING: To avoid injury or death from<br>unexpected start-up of machine, always stop the<br>engine and remove the key from the ignition<br>before leaving the operator's seat for any<br>reason. |                        |
|                                                                   | Added the following step for safety:                                                                                                                                                              |                        |
|                                                                   | Shut down the engine, and remove the key from the ignition.                                                                                                                                       |                        |
| 3.3.1 Attaching A40D Header to M100 or<br>M105 Windrower, page 31 | Revised step to identify driveshield for header sold in North America.                                                                                                                            | ECN 54221<br>Tech Pubs |
|                                                                   | Updated picture of driveshield to current model year.                                                                                                                                             |                        |
| 3.3.1 Attaching A40D Header to M100 or<br>M105 Windrower, page 31 | Added step and picture to identify driveshield for<br>headers sold outside North America.                                                                                                         | Tech Pubs              |
|                                                                   | Added picture of driveshield in the opened position.                                                                                                                                              |                        |
| 3.3.1 Attaching A40D Header to M100 or<br>M105 Windrower, page 31 | Replaced illustration of 4.9 m (16 ft.) A40D header with a photo.                                                                                                                                 | Tech Pubs              |
|                                                                   | Added picture of 5.4 m (18 ft.) A40D header.                                                                                                                                                      |                        |
| 3.3.1 Attaching A40D Header to M100 or                            | Revised step as follows:                                                                                                                                                                          | ECN 53693              |
| M105 Windrower, page 31                                           | Updated picture to show new hose routing per ECN 53693.                                                                                                                                           | Tech Pubs              |
|                                                                   | Specified that the purpose of the step is to move<br>the reel pressure line if required.                                                                                                          |                        |

| Section                                                                       | Summary of Change                                                                                                                                                                                 | Internal Use<br>Only   |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 3.3.2 Attaching A40D Header to an M150,<br>M155, or M155E4 Windrower, page 37 | Replaced the following CAUTION with the following WARNING for consistency across manuals:                                                                                                         | Tech Pubs              |
|                                                                               | CAUTION: To prevent accidental movement of<br>windrower, return ground speed lever (GSL) to<br>Park, center steering wheel to lock, shut off<br>engine, and remove key.                           |                        |
|                                                                               | WARNING: To avoid injury or death from<br>unexpected start-up of machine, always stop the<br>engine and remove the key from the ignition<br>before leaving the operator's seat for any<br>reason. |                        |
|                                                                               | Added the following step for safety:                                                                                                                                                              |                        |
|                                                                               | Shut down the engine, and remove the key from the ignition.                                                                                                                                       |                        |
| 3.3.2 Attaching A40D Header to an M150,<br>M155, or M155E4 Windrower, page 37 | Revised step to identify driveshield for header sold in North America.                                                                                                                            | ECN 54221<br>Tech Pubs |
|                                                                               | Updated picture of driveshield to current model year.                                                                                                                                             |                        |
| 3.3.2 Attaching A40D Header to an M150,<br>M155, or M155E4 Windrower, page 37 | Added step and picture to identify driveshield for<br>headers sold outside North America.                                                                                                         | Tech Pubs              |
|                                                                               | Added picture of driveshield in the opened position.                                                                                                                                              |                        |
| 3.3.2 Attaching A40D Header to an M150,<br>M155, or M155E4 Windrower, page 37 | Replaced illustration of 4.9 m (16 ft.) A40D header with a photo.                                                                                                                                 | Tech Pubs              |
|                                                                               | Added picture of 5.4 m (18 ft.) A40D header.                                                                                                                                                      |                        |
| 3.3.3 Attaching A40D Header to M200<br>Windrower, page 43                     | Replaced the following CAUTION with the following WARNING for consistency across manuals:                                                                                                         | Tech Pubs              |
|                                                                               | CAUTION: To prevent accidental movement of<br>windrower, return ground speed lever (GSL) to<br>Park, center steering wheel to lock, shut off<br>engine, and remove key.                           |                        |
|                                                                               | WARNING: To avoid injury or death from<br>unexpected start-up of machine, always stop the<br>engine and remove the key from the ignition<br>before leaving the operator's seat for any<br>reason. |                        |
|                                                                               | Added the following step for safety:                                                                                                                                                              |                        |
|                                                                               | Shut down the engine, and remove the key from the ignition.                                                                                                                                       |                        |


| Section                                                       | Summary of Change                                                                                                                                                                                 | Internal Use<br>Only   |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 3.3.3 Attaching A40D Header to M200<br>Windrower, page 43     | Revised step to identify driveshield for header sold in North America.      Updated picture of driveshield to current model                                                                       | ECN 54221<br>Tech Pubs |
|                                                               | year.                                                                                                                                                                                             |                        |
| 3.3.3 Attaching A40D Header to M200<br>Windrower, page 43     | Added step and picture to identify driveshield for<br>headers sold outside North America.                                                                                                         | Tech Pubs              |
|                                                               | Added picture of driveshield in the opened position.                                                                                                                                              |                        |
| 3.3.3 Attaching A40D Header to M200<br>Windrower, page 43     | Replaced illustration of 4.9 m (16 ft.) A40D header with a photo.                                                                                                                                 | Tech Pubs              |
|                                                               | Added picture of 5.4 m (18 ft.) A40D header.                                                                                                                                                      |                        |
| 3.3.4 Attaching A40D Header to an M205<br>Windrower, page 49  | Replaced the following CAUTION with the following WARNING for consistency across manuals:                                                                                                         | Tech Pubs              |
| • Step 1, page 49                                             | CAUTION: To prevent accidental movement of<br>windrower, return ground speed lever (GSL) to<br>Park, center steering wheel to lock, shut off<br>engine, and remove key.                           |                        |
|                                                               | WARNING: To avoid injury or death from<br>unexpected start-up of machine, always stop the<br>engine and remove the key from the ignition<br>before leaving the operator's seat for any<br>reason. |                        |
|                                                               | Added the following step for safety:                                                                                                                                                              |                        |
|                                                               | Shut down the engine, and remove the key from the ignition.                                                                                                                                       |                        |
| 3.3.4 Attaching A40D Header to an M205<br>Windrower, page 49  | Revised step to identify driveshield for header sold in North America.                                                                                                                            | Tech Pubs              |
| • Step 2, page 49                                             |                                                                                                                                                                                                   | T   D                  |
| 3.3.4 Attaching A40D Header to an M205<br>Windrower, page 49  | Added step and picture to identify driveshield for<br>headers sold outside North America.                                                                                                         | Tech Pubs              |
| • Step 5, page 51                                             | Added picture of driveshield in the opened position.                                                                                                                                              |                        |
| 3.3.4 Attaching A40D Header to an M205<br>Windrower, page 49  | Replaced illustration of 4.9 m (16 ft.) A40D header with a photo.                                                                                                                                 | Tech Pubs              |
| • Step 13, page 52                                            | Added picture of 5.4 m (18 ft.) A40D header.                                                                                                                                                      |                        |
| 3.3.4 Attaching A40D Header to an M205                        | Revised step as follows:                                                                                                                                                                          | ECN 53693              |
| <ul><li>Windrower, page 49</li><li>Step 18, page 53</li></ul> | Updated picture to show new hose routing per ECN 53693.                                                                                                                                           | Tech Pubs              |
|                                                               | Specified that the purpose of the step is to move<br>the reel pressure line if required.                                                                                                          |                        |

| Section                                                              | Summary of Change                                                                                                                                                                                 | Internal Use<br>Only |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 3.3.6 Routing A40D Header Hydraulic Drive<br>Hoses, page 55          | Revised step to identify driveshield for header sold in North America.                                                                                                                            | Tech Pubs            |
| • Step 3, page 56                                                    |                                                                                                                                                                                                   |                      |
| 3.3.6 Routing A40D Header Hydraulic Drive<br>Hoses, page 55          | Added step and picture to identify driveshield for headers sold outside North America and picture of shield in open position.                                                                     | Tech Pubs            |
| • Step 4, page 56                                                    | sniela in open position.                                                                                                                                                                          |                      |
| 3.3.6 Routing A40D Header Hydraulic Drive<br>Hoses, page 55          | Updated picture to show new hose routing per ECN 53693.                                                                                                                                           | ECN 53693            |
| • Step 7, page 58                                                    |                                                                                                                                                                                                   |                      |
| 3.3.6 Routing A40D Header Hydraulic Drive<br>Hoses, page 55          | Revised step to identify driveshield for header sold in North America.                                                                                                                            | Tech Pubs            |
| • Step 15, page 60                                                   |                                                                                                                                                                                                   |                      |
| 3.3.6 Routing A40D Header Hydraulic Drive<br>Hoses, page 55          | Added step and picture to identify driveshield for headers sold outside North America.                                                                                                            | Tech Pubs            |
| 4.2 Opening/Closing Driveshield, page 104                            | Added an image of the driveshield in an opened position.                                                                                                                                          | Tech Pubs            |
| 4.5.1 Greasing Procedure, page 112                                   | Added the following steps for safety:                                                                                                                                                             | Tech Pubs            |
|                                                                      | Shut down the engine, and remove the key from the ignition.                                                                                                                                       |                      |
|                                                                      | If the header is raised, engage the header safety props.                                                                                                                                          |                      |
| 3.6.9 Checking and Adjusting Float – M Series<br>Windrowers, page 76 | Replaced the following CAUTION with the following WARNING for consistency across manuals:                                                                                                         | Tech Pubs            |
|                                                                      | CAUTION: To prevent accidental movement of<br>windrower, return ground speed lever (GSL) to<br>Park, center steering wheel to lock, shut off<br>engine, and remove key.                           |                      |
|                                                                      | WARNING: To avoid injury or death from<br>unexpected start-up of machine, always stop the<br>engine and remove the key from the ignition<br>before leaving the operator's seat for any<br>reason. |                      |
|                                                                      | Added the following CAUTION for consistency with the M1 Series procedure:                                                                                                                         |                      |
|                                                                      | Never start or move the machine until you are sure all bystanders have cleared the area.                                                                                                          |                      |
| Checking Float – M1 Series Windrowers, page                          | Added NOTE:                                                                                                                                                                                       | Tech Pubs            |
| <ul><li>Refer to the NOTE below 3, page 78</li></ul>                 | Ensure the header is level with the ground with zero tilt.                                                                                                                                        |                      |

## **Model and Serial Number**

Record the model number, serial number, and model year of the header in the spaces below. The header serial number plate is located on the top of the left end frame (A).

| Header Model Number:  |  |
|-----------------------|--|
| Header Serial Number: |  |
| Year:                 |  |



**Figure 1: Header Serial Number Plate Location** 

| EC Declaration of Conformity                                      | i   |
|-------------------------------------------------------------------|-----|
| Introduction                                                      | iii |
| List of Revisions                                                 | v   |
| Model and Serial Number                                           | ix  |
| Chapter 1: Safety                                                 | 1   |
| 1.1 Safety Alert Symbols                                          | 1   |
| 1.2 Signal Words                                                  | 2   |
| 1.3 General Safety                                                | 3   |
| 1.4 Maintenance Safety                                            |     |
| 1.5 Hydraulic Safety                                              |     |
| 1.6 Safety Signs                                                  |     |
| 1.6.1 Installing Safety Decals                                    |     |
| 1.7 Safety Sign Locations: Auger Header                           |     |
| 1.8 Understanding Safety Signs                                    |     |
| 1.9 Owner/Operator Responsibilities                               |     |
| 1.10 Operational Safety                                           |     |
| 1.10 Operational surety                                           | 10  |
| Chapter 2: Product Overview                                       |     |
| 2.1 Definitions                                                   | 19  |
| 2.2 Product Specifications                                        | 21  |
| Chapter 3: Operation                                              | 25  |
| <b>3.1</b> Attaching A40DX Header to M1 Series Windrower          |     |
| <b>3.2</b> Detaching A40DX Header from M1 Series Windrower        |     |
| <b>3.3</b> Attaching A40D Headers to M Series Windrowers          |     |
| 3.3.1 Attaching A40D Header to M100 or M105 Windrower             |     |
| 3.3.2 Attaching A40D Header to an M150, M155, or M155 <i>E4</i> W |     |
| 3.3.3 Attaching A40D Header to M200 Windrower                     |     |
| 3.3.4 Attaching A40D Header to an M205 Windrower                  | 49  |
| 3.3.5 Configuring Reverser Valve Jumper Hose for A40D             | 54  |
| 3.3.6 Routing A40D Header Hydraulic Drive Hoses                   | 55  |
| 3.4 Detaching A40D Header from M Series Windrower                 | 61  |
| 3.5 Header Lift Cylinder Lock-Out Valves                          | 65  |
| 3.6 Operating Variables                                           | 66  |
| 3.6.1 Setting Lean Bar                                            | 67  |
| 3.6.2 Adjusting Auger Speed                                       |     |
| 3.6.3 Adjusting Reel Speed                                        |     |
| 3.6.4 Setting Auger Position                                      |     |
| Adjusting Auger Fore-Art Position                                 |     |
| 3.6.5 Setting Reel Position                                       |     |
| Adjusting Reel Fore-Aft Position                                  |     |

| Adjusting Reel Vertical Position                          |          |
|-----------------------------------------------------------|----------|
| 3.6.6 Setting Tine Aggressiveness                         | 74       |
| 3.6.7 Adjusting Header Angle                              | 75       |
| 3.6.8 Setting Cutting Height                              | 75       |
| 3.6.9 Checking and Adjusting Float – M Series Windrowers  | 76       |
| 3.6.10 Checking and Adjusting Float – M1 Series Windrower | 77<br>78 |
| 3.6.11 Setting Feed Pan and Rock Drop Tine Position       |          |
| 3.6.12 Adjusting Conditioner Roll Gap                     |          |
| 3.6.13 Adjusting Conditioner Roll Tension                 |          |
| 3.6.14 Positioning the Forming Shields                    |          |
| Positioning Side Deflectors                               | 83       |
| 3.7 Recommended Operating Settings                        | 85       |
| 3.8 Unplugging Conditioner and Knife                      | 89       |
| 3.9 Grass Seed Special                                    | 91       |
| 3.9.1 Stub Guards and Hold-Downs                          | 91       |
| 3.9.2 Special Auger Design for Grass Seed Special         | 91       |
| 3.9.3 Seven-Bat Reel                                      | 92       |
| 3.9.4 Auger Pan Extensions                                |          |
| 3.9.5 Windrow Forming Rods                                | 94       |
| 3.10 Selecting Ground Speed                               | 96       |
| 3.11 Tall Crop Dividers                                   | 97       |
| 3.11.1 Adjusting Tall Crop Dividers                       | 97       |
| 3.11.2 Removing Tall Crop Dividers                        | 98       |
| <b>3.12</b> Haying                                        |          |
| 3.12.1 Haying Tips                                        |          |
| Curing                                                    |          |
| Topsoil Moisture                                          |          |
| Weather and Topography                                    |          |
| Driving on Windrow                                        |          |
| Raking and Tedding                                        |          |
| Using Chemical Drying Agents                              | 101      |
| Chapter 4: Maintenance and Servicing                      | 103      |
| 4.1 Preparing for Servicing                               |          |
| 4.2 Opening/Closing Driveshield                           |          |
| 4.3 Endshields                                            |          |
| 4.4 Maintenance Requirements                              |          |
| 4.4.1 Maintenance Schedule/Record                         |          |
| 4.4.2 Break-In Inspection                                 |          |

| 4.4.3 Preseason Checks                                         | 110 |
|----------------------------------------------------------------|-----|
| 4.4.4 Storage                                                  |     |
| 4.5 Lubrication                                                | 112 |
| 4.5.1 Greasing Procedure                                       | 112 |
| 4.5.2 Lubrication Points                                       | 112 |
| Lubrication Points: Auger Header                               |     |
| Lubrication Points – Hay Conditioner                           |     |
| Lubrication Points: Drivelines                                 |     |
| 4.5.3 Knife and Gearbox Oil                                    |     |
| 4.5.4 Installing Sealed Bearings                               | 118 |
| <b>4.6</b> Hydraulics                                          |     |
| 4.6.1 Servicing Header Hydraulics                              | 119 |
| 4.6.2 Checking Hoses and Lines                                 | 119 |
| <b>4.7</b> Cutterbar                                           | 120 |
| 4.7.1 Replacing Knife Section                                  | 120 |
| 4.7.2 Removing Knife                                           | 121 |
| 4.7.3 Installing Knife                                         |     |
| 4.7.4 Removing Knifehead Bearing                               |     |
| 4.7.5 Installing Knifehead Bearing                             | 123 |
| 4.7.6 Removing Spare Knife from Storage                        | 124 |
| 4.7.7 Guards                                                   |     |
| Aligning Guard                                                 | 125 |
| Replacing Pointed Guards and Hold-Downs                        |     |
| Replacing Pointed Center Guard on Double-Knife Header          |     |
| Replacing Center Stub Guard on Double-Knife Header             |     |
| 4.7.8 Hold-Downs                                               |     |
| Adjusting Knife Hold-Down: Stub Guard – Double-Knife Header    |     |
| 4.7.9 Knife Drive Box                                          |     |
| Mounting Bolts                                                 |     |
| Removing Knife Drive Box                                       |     |
| Installing Knife Drive Box                                     |     |
| Removing Pulley                                                |     |
| Installing Pulley                                              |     |
| Changing Knife Drive Box Oil                                   |     |
| 4.7.10 Adjusting Knife Timing                                  |     |
| <b>4.8</b> Header Drive Systems                                |     |
| 4.8.1 Header Knife Drive                                       |     |
| Checking/Adjusting V-Belt Tension on Left Side                 |     |
| Removing Left V-Belts                                          |     |
| Installing Double V-Belts                                      |     |
| Checking and Adjusting Left Timing Belt Tension                |     |
| Removing Timing Belt from Left SideInstalling Left Timing Belt |     |
| Checking and Adjusting Right Timing Belt Tension               |     |
| Removing Right Timing Belt                                     |     |
| Installing Right Timing Belt                                   |     |
| 4.8.2 Header Reel Drive                                        | 149 |

| 4.8.3 Header Auger Drive                                   | 1/10 |
|------------------------------------------------------------|------|
| 4.9 Reel Tines and Tine Bar Bearings                       |      |
| 4.9.1 Replacing Tine and Bearing: Cam End – Disc #1        |      |
| 4.9.2 Replacing Tine and Bearing: Disc #2                  |      |
| 4.9.3 Replacing Tine and Bearing: Center Section X         |      |
| 4.9.4 Replacing Tine and Bearing: Opposite Cam – Section Y |      |
| 4.9.5 Replacing Tine: Tine Bar Extension – Section Z       |      |
| 4.10 Straightening Auger Pans                              |      |
| 4.11 Replacing Rubber Fingers                              |      |
| 4.12 Stripper Bar                                          |      |
| 4.12.1 Removing Stripper Bar                               |      |
| 4.12.2 Replacing Stripper Bars                             |      |
| 4.12.3 Installing Front Stripper Bar Extensions            |      |
| 4.13 Conditioner                                           |      |
| 4.13.1 Changing Gearbox Oil                                |      |
| 4.13.2 Removing Forming Shield                             |      |
| 4.13.3 Disassembling Forming Shield                        |      |
| 4.13.4 Assembling Forming Shield                           |      |
| 4.13.5 Installing Forming Shield                           |      |
| 4.13.6 Removing Header Drive Motor                         |      |
| 4.13.7 Installing Header Drive Motor                       |      |
| 4.13.8 Removing Conditioner Gearbox                        |      |
| 4.13.9 Installing Conditioner Gearbox                      |      |
| 4.13.10 Checking/Adjusting Roll Alignment                  |      |
| 4.13.11 Checking/Adjusting Roll Timing                     |      |
| 4.14 Replacing Skid Shoe Wear Plate                        |      |
| <b>4.15</b> Gauge Rollers                                  |      |
| 4.15.1 Removing Gauge Rollers                              |      |
| 4.15.2 Installing Gauge Rollers                            |      |
| 4.16 Maintaining the Electrical System                     |      |
| Chapter 5: Optional Equipment                              | 195  |
| <b>5.1</b> Options and Attachments                         |      |
| 5.1.1 Additional Skid Shoes                                |      |
| 5.1.2 Gauge Roller Kit                                     |      |
| 5.1.3 Replacement Reel Bat Kit                             |      |
| 5.1.4 Stub Guard Conversion Kit                            |      |
| 5.1.5 Tall Crop Divider Kit                                |      |
| Chapter 6: Unloading and Assembly                          | 197  |
| Chapter 7: Troubleshooting                                 |      |
| -                                                          |      |
| 7.1 Header Performance                                     |      |
| 7 2 Mechanical                                             | 203  |

| Chapter 8: Reference                                  | 205 |
|-------------------------------------------------------|-----|
| 8.1 Recommended Torques                               |     |
| 8.1.1 Torque Specifications                           | 205 |
| SAE Bolt Torque Specifications                        | 205 |
| Metric Bolt Specifications                            |     |
| Metric Bolt Specifications Bolting into Cast Aluminum |     |
| Flare-Type Hydraulic Fittings                         |     |
| O-Ring Boss Hydraulic Fittings – Adjustable           |     |
| O-Ring Boss Hydraulic Fittings – Non-Adjustable       |     |
| O-Ring Face Seal Hydraulic Fittings                   |     |
| Tapered Pipe Thread Fittings                          |     |
| 8.2 Conversion Chart                                  | 216 |
| Index                                                 | 217 |
| Recommended Fluids and Lubricants                     | 223 |

# **Chapter 1: Safety**

## 1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

- ATTENTION!
- BECOME ALERT!
- YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

#### Why is safety important to you?

- Accidents disable and kill
- Accidents cost
- · Accidents can be avoided



Figure 1.1: Safety Symbol

## 1.2 Signal Words

Three signal words, **DANGER**, **WARNING**, and **CAUTION**, are used to alert you to hazardous situations. Two signal words, **IMPORTANT** and **NOTE**, identify non-safety related information. Signal words are selected using the following guidelines:



#### **DANGER**

Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.



### **WARNING**

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.



## **CAUTION**

Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.

#### **IMPORTANT:**

Indicates a situation that, if not avoided, could result in a malfunction or damage to the machine.

#### NOTE:

Provides additional information or advice.

#### **General Safety** 1.3



## CAUTION

The following general farm safety precautions should be part of your operating procedure for all types of machinery.

Protect yourself when assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for the job at hand. Do NOT take chances. You may need the following:

- Hard hat
- Protective footwear with slip-resistant soles
- Protective glasses or goggles
- Heavy gloves
- Wet weather gear
- Respirator or filter mask

In addition, take the following precautions:

Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as earmuffs or earplugs to help protect against loud noises.

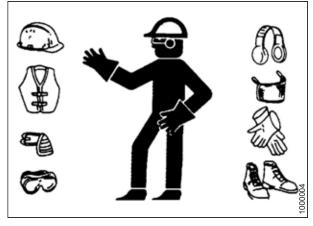



Figure 1.2: Safety Equipment



Figure 1.3: Safety Equipment

- Provide a first aid kit in case of emergencies.
- Keep a properly maintained fire extinguisher on the machine. Be familiar with its proper use.
- Keep young children away from machinery at all times.
- Be aware that accidents often happen when the Operator is tired or in a hurry. Take time to consider safest way. NEVER ignore warning signs of fatigue.

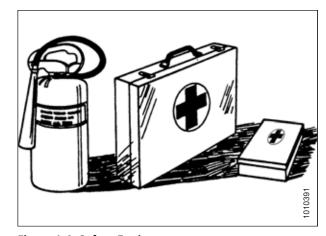



Figure 1.4: Safety Equipment

- Wear close-fitting clothing and cover long hair. NEVER wear dangling items such as scarves or bracelets.
- Keep all shields in place. NEVER alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.
- Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.



Figure 1.5: Safety around Equipment

- Keep hands, feet, clothing, and hair away from moving parts.
   NEVER attempt to clear obstructions or objects from a machine while the engine is running.
- Do NOT modify the machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten the machine's life.
- To avoid injury or death from unexpected startup of the machine, ALWAYS stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

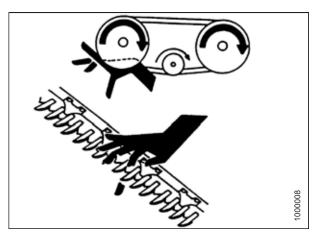



Figure 1.6: Safety around Equipment

- Keep service area clean and dry. Wet and/or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.
- · Keep work area well lit.
- Keep machinery clean. Straw and chaff on a hot engine are fire hazards. Do NOT allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.
- NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.
- When storing machinery, cover sharp or extending components to prevent injury from accidental contact.

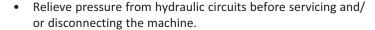
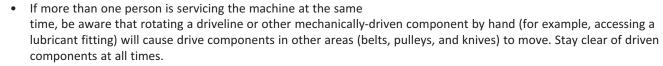



Figure 1.7: Safety around Equipment


## 1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review the operator's manual and all safety items before operation and/or maintenance of the machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- Follow good shop practices:
  - Keep service areas clean and dry
  - Be sure electrical outlets and tools are properly grounded
  - Keep work area well lit



- Relieve pressure from hydraulic circuits before servicing and/ or disconnecting the machine.
- Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
- Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
- Clear the area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
- Install transport lock or place safety stands under the frame before working under the machine.



- Wear protective gear when working on the machine.
- Wear heavy gloves when working on knife components.




Figure 1.8: Safety around Equipment

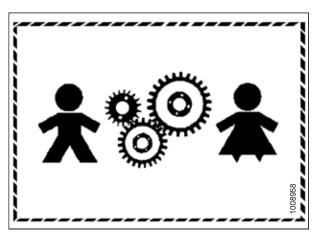



Figure 1.9: Equipment NOT Safe for Children

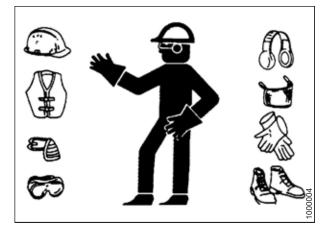
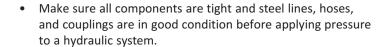




Figure 1.10: Safety Equipment

## 1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before leaving the operator's seat.
- Make sure that all components in the hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do NOT attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely highpressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.
- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately. Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.



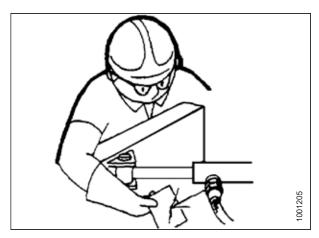



Figure 1.11: Testing for Hydraulic Leaks



Figure 1.12: Hydraulic Pressure Hazard

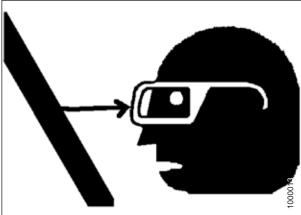



Figure 1.13: Safety around Equipment

## 1.6 Safety Signs

- Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or illegible.
- If the original part on which a safety sign was installed is replaced, be sure the repair part displays the current safety sign.
- Replacement safety signs are available from your MacDon Dealer Parts Department.

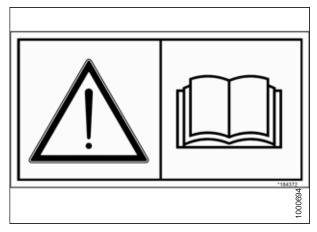



Figure 1.14: Operator's Manual Decal

## 1.6.1 Installing Safety Decals

- 1. Clean and dry the installation area.
- 2. Decide exactly where you are going to place the decal.
- 3. Remove the smaller portion of the split backing paper.
- 4. Place the decal in position and slowly peel back the remaining paper, smoothing the decal as it is applied.
- 5. Prick small air pockets with a pin and smooth out.

# 1.7 Safety Sign Locations: Auger Header

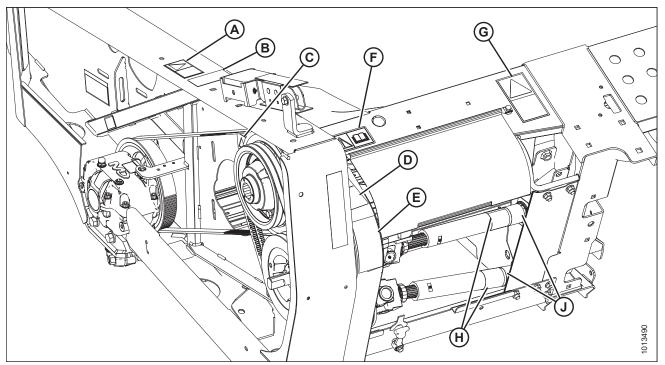



Figure 1.15: Left Side of Header

A - MD #174632

D - MD #174436

G - MD #194464

B - MD #184422 E - MD #171288

H - MD #194521

C - MD #166452

F - MD #184372 J - MD #36651

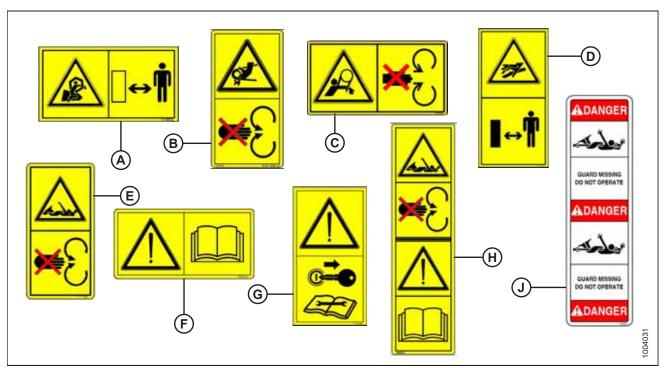



Figure 1.16: Decals on Left Side of Header

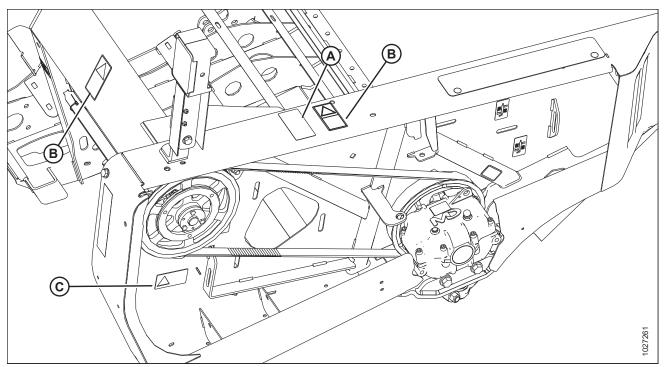



Figure 1.17: Right Side of Header

A - MD #184422 B - MD #170638 C - MD #166452

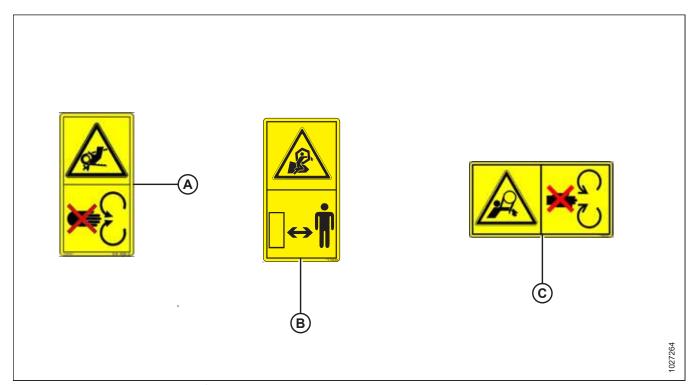



Figure 1.18: Decals on Right Side of Header

## 1.8 Understanding Safety Signs

#### MD #36651

Driveline entanglement hazard

#### **DANGER**

• Rotating driveline contact can cause death—keep away!

Do **NOT** operate without:

- Stopping the engine and removing the key before opening shield
- All driveline guards, tractor, and equipment shields in place.

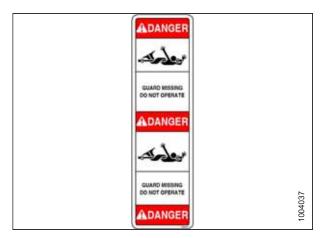



Figure 1.19: MD #36651

#### MD #41980

Header crushing hazard

#### **WARNING**

To prevent injury or death from fall of raised header:

- Do NOT lift header at marked locations.
- Only use marked locations to lower header from vertical to horizontal position



Figure 1.20: MD #41980

#### MD #113482

General hazard pertaining to machine operation and servicing

#### **DANGER**

To prevent injury or death from improper or unsafe machine operation:

- Read the operator's manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do NOT allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.



Figure 1.21: MD #113482

- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator's position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety locks to prevent lowering of raised unit before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

Hand and arm entanglement hazard

#### **WARNING**

To prevent injury:

- Do **NOT** operate without shields in place.
- Stop the engine and remove the key before opening shield.

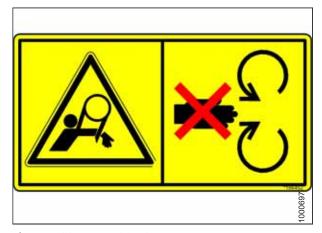



Figure 1.22: MD #166452

#### MD #166466

High-pressure oil hazard

#### **WARNING**

To prevent serious injury, gangrene, or death:

- Do **NOT** go near leaks.
- Do **NOT** use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.
- High-pressure oil can easily puncture skin, and can cause serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.



Figure 1.23: MD #166466

Reel entanglement hazard

#### **DANGER**

To prevent injury from entanglement with rotating reel:

• Stand clear of header or pull-type while machine is running.



Figure 1.24: MD #170638



Hot fluid spray hazard

#### **CAUTION**

To prevent injury:

- Do **NOT** remove fluid fill cap when engine is hot.
- Allow engine to cool down before opening fluid fill cap.
- Fluid is under pressure and may be hot.



Figure 1.25: MD #171281

## MD #171288

Auger entanglement hazard

#### **DANGER**

To prevent injury:

- Stop engine and remove key before servicing auger
- Do **NOT** reach into moving parts while machine is running.

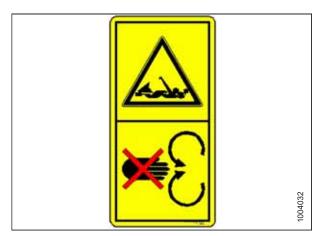



Figure 1.26: MD #171288

High-pressure oil hazard

#### WARNING

To prevent serious injury, gangrene, or death:

- Do NOT go near leaks.
- Do **NOT** use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.
- High-pressure oil can easily puncture skin, and can cause serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.



Reel entanglement hazard

#### **DANGER**

To prevent injury from entanglement with rotating reel:

• Stand clear of header while machine is running.



Figure 1.27: MD #174436



Figure 1.28: MD #174632

Figure 1.29: MD #184372

#### MD #184372

General hazard pertaining to machine operation and servicing

#### **DANGER**

To prevent injury or death from improper or unsafe machine operation:

- Read the operator's manual and follow all safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do **NOT** allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.

- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator's position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety locks to prevent lowering of raised unit before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

Hand and arm entanglement hazard

#### **WARNING**

To prevent injury:

- Stop engine and remove key before opening shield.
- Do NOT operate without shields in place.



Figure 1.30: MD #184422

#### MD #194464

General hazard

#### **DANGER**

To prevent injury or death:

- Stop engine and remove key before service.
- Read tractor and pull-type manufacturer's manuals for inspection and maintenance instructions.
- Read the windrower and header manuals for inspection and maintenance instructions.

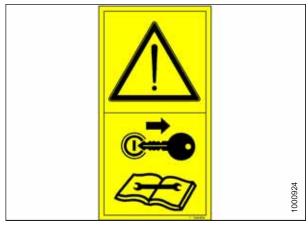



Figure 1.31: MD #194464

Auger entanglement hazard

#### **DANGER**

To prevent injury from entanglement with rotating auger:

- Stand clear of header while machine is running.
- Do **NOT** operate without shields in place.
- Stop engine and remove key before opening shield.

General hazard pertaining to machine operation and servicing.

#### **DANGER**

To prevent injury or death from improper or unsafe machine operation:

- Read the operator's manual and follow safety instructions. If you do not have a manual, obtain one from your Dealer.
- Do **NOT** allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator's position.
- Stop the engine and remove the key from the ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety locks to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

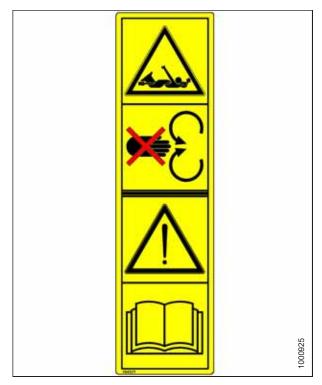



Figure 1.32: MD #194521

Header crushing hazard

#### **IMPORTANT:**

Decal MD #304865 supersedes MD #304464. For more information about MD #304865, refer to Figure 1.34, page 16.

#### **WARNING**

To prevent injury or death from fall of raised header:

- Do **NOT** lift header at marked locations.
- Only use marked locations to lower header from vertical to horizontal position

#### MD #304865

Header crushing hazard

#### WARNING

To prevent injury or death from fall of raised header:

- Do **NOT** lift header at marked locations.
- Only use marked locations to lower header from vertical to horizontal position

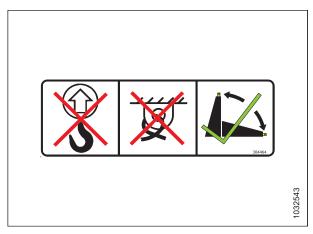



Figure 1.33: MD #304464



Figure 1.34: MD #304865

## **Owner/Operator Responsibilities**



# **A** CAUTION

- . It is your responsibility to read and understand this manual completely before operating the header. Contact your Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety signs on the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the header, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- Review the manual and all safety related items with all Operators annually.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.
- Do not modify the machine. Unauthorized modifications may impair the function and/or safety and affect machine life.
- Safety information given in this manual does not replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
- Ensure that windrower is properly equipped to safely operate header. This may include adding ballast according to the tractor operator's manual requirements for attachments of this size and mass.

#### **Operational Safety** 1.10



## CAUTION

- Follow all safety and operational instructions given in your operator's manual. If you do not have a windrower manual, get one from your Dealer and read it thoroughly.
- Never attempt to start windrower engine or operate the machine, except from the operator's seat.
- Check the operation of all controls in a safe clear area before starting work.
- Do not allow riders on windrower.
- Never start or move the machine until you are sure all bystanders have cleared the area.
- Avoid travelling over loose fill, rocks, ditches or holes.
- Drive slowly through gates and doorways.
- If cutting ditch banks, use extreme caution. If the header hits an obstruction, front of the windrower will usually swerve towards the ditch.
- When working on inclines, travel uphill or downhill when possible. Be sure to keep windrower transmission in gear when travelling downhill.
- Never attempt to get on or off a moving windrower.
- Do not get off the windrower while the machine is in operation.
- To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before adjusting or removing plugged material from the machine.
- Operate only in daylight or good artificial light.



## **CAUTION**

Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect machine. Follow proper shutdown procedure as follows:

- Engage windrower brake.
- Disengage PTO.
- Turn engine OFF, and remove key.
- Wait for all movement to stop.
- Dismount and engage cylinder stops before inspecting raised machine.

# **Chapter 2: Product Overview**

# 2.1 Definitions

The following terms and acronyms may be used in this manual:

| Term                  | Definition                                                                                                                                                                                      |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A Series header       | MacDon A30S, A30D, A40D, A40DX, and Grass Seed auger headers                                                                                                                                    |  |
| API                   | American Petroleum Institute                                                                                                                                                                    |  |
| ASTM                  | American Society of Testing and Materials                                                                                                                                                       |  |
| Bolt                  | A headed and externally threaded fastener that is designed to be paired with a nut                                                                                                              |  |
| Cab-forward           | Windrower operation with Operator and cab facing in direction of travel                                                                                                                         |  |
| CDM                   | Cab display module on an M Series Windrower                                                                                                                                                     |  |
| Center-link           | A hydraulic cylinder link between the header and machine used to change header angle                                                                                                            |  |
| CGVW                  | Combined gross vehicle weight                                                                                                                                                                   |  |
| DK                    | Double knife                                                                                                                                                                                    |  |
| DKD                   | Double-knife drive                                                                                                                                                                              |  |
| DWA                   | Double Windrow Attachment                                                                                                                                                                       |  |
| ECM                   | Engine control module                                                                                                                                                                           |  |
| Export header         | Header configuration typical outside North America                                                                                                                                              |  |
| FFFT                  | Flats from finger tight                                                                                                                                                                         |  |
| Finger tight          | Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose        |  |
| GSS                   | Grass Seed                                                                                                                                                                                      |  |
| GVW                   | Gross vehicle weight                                                                                                                                                                            |  |
| Hard joint            | A joint made with use of a fastener where joining materials are highly incompressible                                                                                                           |  |
| Header                | A machine that cuts and lays crop into a windrow and is attached to a windrower                                                                                                                 |  |
| Hex key               | A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms |  |
| hp                    | Horsepower                                                                                                                                                                                      |  |
| JIC                   | Joint Industrial Council: A standards body that developed standard sizing and shape for original 37° flared fitting                                                                             |  |
| Knife                 | A cutting device which uses a reciprocating cutter (also called a sickle)                                                                                                                       |  |
| M Series windrower    | MacDon M100, M105, M150, M155, M155 <i>E4</i> , M200, and M205 windrowers                                                                                                                       |  |
| M1 Series             | MacDon M1170 and M1240 Windrowers                                                                                                                                                               |  |
| n/a                   | Not applicable                                                                                                                                                                                  |  |
| N-DETENT              | The slot opposite the NEUTRAL position on the operator's console of M Series SP Windrowers                                                                                                      |  |
| North American header | Header configuration typical in North America                                                                                                                                                   |  |

| Term                                     | Definition                                                                                                                                                          |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NPT                                      | National Pipe Thread: A style of fitting used for low-pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit                  |  |
| Nut                                      | An internally threaded fastener that is designed to be paired with a bolt                                                                                           |  |
| ORB                                      | O-ring boss: A style of fitting commonly used in port openings on manifolds, pumps, and motors                                                                      |  |
| ORFS                                     | O-ring face seal: A style of fitting commonly used for connecting hoses and tubes. This style of fitting is also commonly called ORS, which stands for O-ring seal  |  |
| RoHS (Reduction of Hazardous Substances) | A directive by the European Union to restrict use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings)                   |  |
| rpm                                      | Revolutions per minute                                                                                                                                              |  |
| SAE                                      | Society of Automotive Engineers                                                                                                                                     |  |
| Screw                                    | A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part                                            |  |
| Self-Propelled (SP)<br>Windrower         | Self-propelled machine consisting of a power unit with a header                                                                                                     |  |
| SKD                                      | Single-knife drive                                                                                                                                                  |  |
| Soft joint                               | A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time                                         |  |
| spm                                      | Strokes per minute                                                                                                                                                  |  |
| Tension                                  | Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)                                                                               |  |
| TFFT                                     | Turns from finger tight                                                                                                                                             |  |
| Timed knife drive                        | Synchronized motion applied at cutterbar to two separately driven knives from a single hydraulic motor                                                              |  |
| Torque                                   | The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf·ft)                                                           |  |
| Torque angle                             | A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position |  |
| Torque-tension                           | The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw                                                  |  |
| Washer                                   | A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or locking mechanism                           |  |
| WCM                                      | Windrower control module                                                                                                                                            |  |
| Windrower                                | Power unit for a header                                                                                                                                             |  |
| WOT                                      | Wide open throttle                                                                                                                                                  |  |

# 2.2 Product Specifications

# NOTE:

Specifications and design are subject to change without notice, or obligation to revise previously sold units.

Table 2.1 A40D, A40DX Self-Propelled Windrower Auger Header Specifications

| Cutterbar                                                                       |                                       |         |                        |  |
|---------------------------------------------------------------------------------|---------------------------------------|---------|------------------------|--|
| Effective cutting width                                                         | 4.3 m (14 ft.) header                 |         | 4496 mm (14 ft. 9 in.) |  |
| Effective cutting width                                                         | 4.9 m (16 ft.) header                 |         | 4953 mm (16 ft. 3 in.) |  |
| Effective cutting width                                                         | 5.5 m (18 ft.) header                 |         | 5410 mm (17 ft. 9 in.) |  |
| Double-knife drive: hydraulic motor<br>heavy duty (MD) knife drive boxes        | Standard                              |         |                        |  |
| Knife stroke                                                                    |                                       |         | 76 mm (3 in.)          |  |
| Knife speed (strokes per minute)                                                | Factory                               | No load | 1400–1950              |  |
| Knife speed (strokes per minute)                                                | Factory                               | Load    | 1400–1950              |  |
| Knife speed (strokes per minute)                                                | Switching pulleys                     | No load | 1400–1950              |  |
| Knife speed (strokes per minute)                                                | Switching pulleys                     | Load    | 1400–1950              |  |
| Double heat-treated forged pointed (GSS headers fitted with stub guard          | Standard                              |         |                        |  |
| Bolted over-serrated knife sections – 9 serrations per inch                     |                                       |         | Standard               |  |
| Center overlap                                                                  |                                       |         | 3 mm (1/8 in.)         |  |
| Cutterbar lift range (measured at guard tip)                                    | Below ground                          |         | 150 mm<br>(5 3/4 in.)  |  |
| Cutterbar lift range (measured at guard tip)                                    | Above ground                          |         | 900 mm<br>(35 3/8 in.) |  |
| Guard angle (cutterbar on ground)                                               |                                       |         | 7 to 17 1/2 degrees    |  |
| Replaceable, abrasion-resistant cutterbar wearplates                            |                                       |         | Standard               |  |
| Inner skid shoes, adjustable set of two (can be relocated to outboard location) |                                       |         | Standard               |  |
| Outer skid shoes or gauge rollers                                               | Optional<br>(Required for GSS header) |         |                        |  |
| Outer gauge rollers                                                             |                                       |         | Optional               |  |
| Auger                                                                           |                                       |         |                        |  |
| Diameter                                                                        | Overall                               |         | 508 mm (20 in.)        |  |
| Diameter                                                                        | Tube O.D.                             |         | 254 mm (10 in.)        |  |
| Undershot, center feed                                                          |                                       |         | Standard               |  |
| Flighting                                                                       | Width                                 |         | 127 mm (5 in.)         |  |
| Flighting                                                                       | Thickness                             |         | 6 mm (1/4 in.)         |  |
| Pitch                                                                           |                                       |         | 590 mm (23 1/4 in.)    |  |
| Rubber feed fingers                                                             |                                       |         | Standard               |  |
| Stripper bars (three per side)                                                  |                                       |         | Standard               |  |

Table 2.1 A40D, A40DX Self-Propelled Windrower Auger Header Specifications (continued)

| Auger drive                                                                                         | Hydraulic, 15.9 cu in. (261 cc) per rev direct mounted motor                          | Standard                 |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------|--|
| Auger speed                                                                                         | SP windrower                                                                          | 230–320 rpm              |  |
| Replaceable high density polyethyler                                                                | Replaceable high density polyethylene auger pans: two-piece design                    |                          |  |
| Rock drop tines at discharge opening                                                                | with discharge angle adjustment                                                       | Standard                 |  |
| Delivery opening width                                                                              |                                                                                       | 2430 mm (95 11/16 in.)   |  |
| Reel                                                                                                |                                                                                       |                          |  |
| Oval closed section bats with end caps.  NOTE: Grass Seed Special model has standard seven-bat reel |                                                                                       | 6 bats<br>optional 7 bat |  |
| Steel fingers                                                                                       |                                                                                       | 6 mm (1/4 in.) diameter  |  |
| Reel radius (to finger tip)                                                                         |                                                                                       | 540 mm (22 in.)          |  |
| Single piece tine bar with replaceable polyethylene bearings                                        |                                                                                       | N/A                      |  |
| Sectioned tine bar with regreasable ball bearings                                                   |                                                                                       | Standard                 |  |
| Drive                                                                                               | Hydraulic motor: 14.2 cu in.<br>(232 cc) /rev to enclosed gearbox                     | Standard                 |  |
| Reel speed                                                                                          | M100/M105/M205 SP hydraulic variable                                                  | 50-85 rpm                |  |
| Reel speed                                                                                          | M150/M155/M155 <i>E4</i> /M200 SP hydraulic variable                                  | 15–85 rpm                |  |
| Reel speed                                                                                          | M1170/M1240 SP hydraulic variable (with variable speed kit installed)                 | 15–85 rpm                |  |
| Reel speed                                                                                          | M1170/M1240 SP hydraulic variable (standard reel)                                     | 50–85 rpm                |  |
| Hay Conditioner                                                                                     |                                                                                       |                          |  |
| Roll-type                                                                                           |                                                                                       | Intermeshing steel bars  |  |
| Roll size                                                                                           | Length 2590 mm (2                                                                     |                          |  |
| Roll size                                                                                           | Overall                                                                               | 233 mm (9 3/16 in.)      |  |
| Roll size                                                                                           | Tube                                                                                  | 168 mm (6 5/8 in.)       |  |
| Drive: 44 cc. hydraulic piston motor to enclosed gearbox                                            |                                                                                       | Standard                 |  |
| Roll speed                                                                                          | Roll speed SP windrower                                                               |                          |  |
| Plug Prevention / Unplugging                                                                        |                                                                                       |                          |  |
| Self-propelled                                                                                      | Reverse hydraulic flow to three motors (reverses knife, auger, reel, and conditioner) |                          |  |

Table 2.1 A40D, A40DX Self-Propelled Windrower Auger Header Specifications (continued)

| Swath Forming Shield                                                                            |                                               |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| Swath width range                                                                               | 915 mm (36 in.) to<br>2540 mm (100 in.)       |  |
| Header-mounted adjustable baffle                                                                | Standard                                      |  |
| Attachment                                                                                      | Windrower                                     |  |
| Adjustable side deflectors                                                                      | Standard                                      |  |
| Frame And Structure                                                                             |                                               |  |
| Two amber transport lights                                                                      | Standard                                      |  |
| Header width                                                                                    | Nominal cut width plus<br>480 mm (18 7/8 in.) |  |
| Header attachment                                                                               | Windrower                                     |  |
| Spare knife storage                                                                             | Lean bar                                      |  |
| Tool and parts storage compartment                                                              | N/A                                           |  |
| Header Hydraulics Connection                                                                    |                                               |  |
| Direct coupled hoses                                                                            | N/A                                           |  |
| Hydraulic quick couplers                                                                        | Standard                                      |  |
| Attachments And Accessories                                                                     |                                               |  |
| Header reversing wrench and guard straightening tool                                            | Standard                                      |  |
| Double Windrow Attachment (DWA) M150/M155/M200/M205 windrowers (non GSS headers only)  Optional |                                               |  |

# **Chapter 3: Operation**

This chapter will describe the operating procedures for the A40D and A40DX SP Windrower Auger Header.

# 3.1 Attaching A40DX Header to M1 Series Windrower



# **WARNING**

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

This procedure also applies to A40D Series Headers equipped with the Auger Header Compatibility kit (MD #B5998) or the A40D SP Grass Seed Auger Conversion kit (MD #B6384). Refer to your windrower operator's manual for procedures to mechanically attach an A40DX Auger Header to an M1 Series Windrower and for modifications to the windrower hydraulic connections (if required).

#### **IMPORTANT:**

If attempting to attach an A40D Header to an M1170 or M1240 Windrower, the M1 Series Conversion kit (MD #B5998) or the A40D SP Grass Seed Auger Conversion kit (MD #B6384) must first be installed. These kits include a new manifold and hose bundle required for operation with an M1 Series Windrower, and effectively converts an A40D header into an A40DX header.

Header drive hydraulic hoses and electrical harness are located on the left, cab-forward side of the windrower. To connect the hydraulic and electrical bundle from an A40DX header to an M1 Series Windrower, follow these steps:

- 1. Shut down the engine, and remove the key from the ignition.
- Route header hose bundle through hose guide (A) on header as shown.

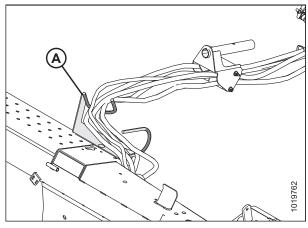



Figure 3.1: Hose Bundle

3. Insert hose support (B) into hole (A) in the windrower left leg, and route header hose bundle (C) under the windrower to the hydraulic and electrical couplers.

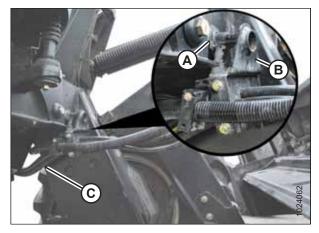



Figure 3.2: Hose Support

4. If attaching to a rotary disc-ready windrower, ensure knife drive hose (A) is connected to coupler (B).

### NOTE:

Hose (A) provides power to run the knife/conditioner.

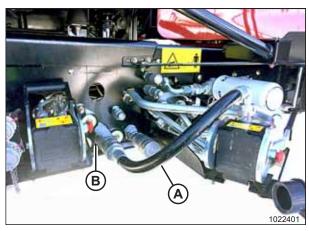



Figure 3.3: M1170/M1240 – Rotary Disc Header Configured

## NOTE:

M1170 Windrowers with standard auger/draper configuration don't require the knife drive hose; only the two multicouplers (A) are used to connect the auger header.

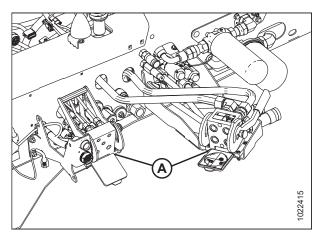



Figure 3.4: M1170 Standard Configuration – Auger/ Draper Ready

- Clean multicouplers and receptacles to prevent contamination.
- 6. Push button (A) on rear multicoupler receptacle and pull handle (B) away from windrower.
- 7. Open cover (C) and position multicoupler (D) onto receptacle. Align pins in coupler with slots in handle (B), and push handle toward windrower so that coupler is locked onto receptacle and button (A) snaps out.
- 8. Push button (E) on front multicoupler receptacle and pull handle (F) away from windrower.
- 9. Open cover (H) and position multicoupler (G) onto receptacle. Align pins in coupler with slots in handle, and push handle (F) toward windrower so that coupler is locked onto receptacle and button (E) snaps out.
- 10. Remove cover from receptacle (A) and connect electrical harness from header.

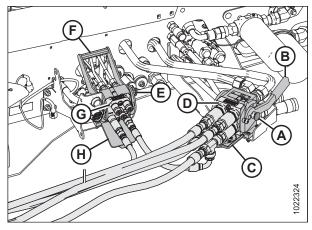



Figure 3.5: Multicouplers

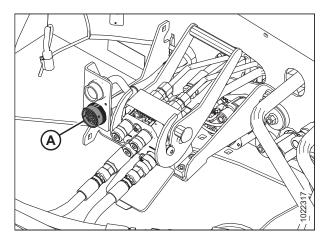



Figure 3.6: Windrower Electrical Connector

### A40DX Grass Seed headers and A40DX headers equipped with Reel Speed Control kit (MD #B6604)

A40DX Grass Seed headers have a factory-installed reel speed kit and includes a second electrical connection required for attaching to an M1 Series Windrower. The Reel Speed Control kit (MD #B6604) is an available option for an A40DX header.

Complete the following step when connecting an A40DX Grass Seed header (or an A40DX header with MD #B6604 equipped) to an M1 Series Windrower:

# **OPERATION**

11. Remove cover from receptacle (A) on windrower and connect electrical harness (B) from header.

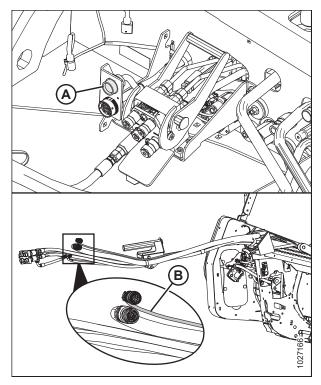



Figure 3.7: Electrical Connection

# 3.2 Detaching A40DX Header from M1 Series Windrower

Refer to your windrower operator's manual for procedures to mechanically detach the auger header from the M1 Series Windrower. To detach an A40DX header's hydraulics and electrical from an M1 Series Windrower, follow these steps:



## WARNING

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Disconnect header electrical harness (A) from the receptacle on the windrower multicoupler.

### NOTE:

If the auger header is equipped with the reel speed control kit, also disconnect reel speed harness (B) from the upper receptacle.

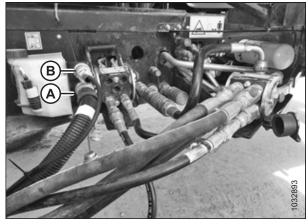



Figure 3.8: Windrower Electrical Connector

- 3. Push button (E) on front multicoupler, and pull handle (F) away from windrower.
- Remove multicoupler (G) from receptacle and set aside.
   Clean multicouplers and receptacles to prevent contamination. Install caps and plugs on hoses and fittings (if equipped).
- 5. Close cover (H) and push handle (F) towards windrower until button (E) snaps out.
- 6. Push button (A) on rear multicoupler, and pull handle (B) away from the windrower.
- Remove multicoupler (D) from receptacle and set aside.
   Clean multicouplers and receptacles to prevent contamination. Install caps and plugs on hoses and fittings (if equipped).
- 8. Close cover (C) and push handle (B) towards windrower until button (A) snaps out.

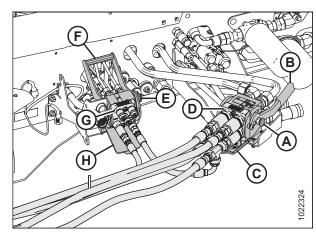



Figure 3.9: Multicouplers

Remove hose support (B) from hole (A) in windrower left leg, and remove header hose bundle (C) from the windrower.

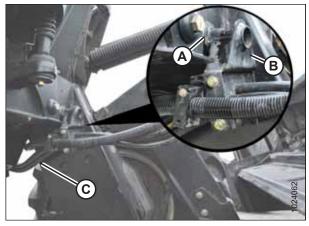



Figure 3.10: Hose Support

- 10. Keeping hose bundle (A) in hose guide (B), store hose bundle on top of header walkway (C), away from the windrower.
- 11. Detach header from windrower. For instructions, refer to your windrower operator's manual.

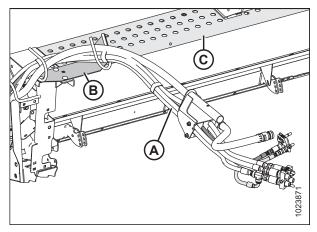



Figure 3.11: Detached Header Hydraulics Bundle

# 3.3 Attaching A40D Headers to M Series Windrowers

The header drive hydraulic hoses and electrical harness are located on the left cab-forward side of the windrower. Refer to the following procedures for electrical and hydraulic connections:

#### IMPORTANT:

M150, M155, M155*E*4, and M200 Windrowers with the M Series Reverser kit (MD #B4656) installed need to have the reverser valve hose plumbing changed if switching between a D Series Draper Header with a conditioner to an A40D Auger Header. Changing this plumbing prevents improper operation and damage to the reel drive motor.

Refer to 3.3.5 Configuring Reverser Valve Jumper Hose for A40D, page 54 and (if necessary) to M Series Reverser Kit Installation Instructions (MD #169213), available from our dealer-only site (https://portal.macdon.com) (login required).

#### NOTE:

Header reel motor hose routing must be properly configured before attaching the header to a windrower. Hose routing on the header is factory-configured for M150, M155, M155*E*4, and M200 Windrowers. Header hose routing must be reconfigured if the header is being used on M100, M105, or M205 Windrowers.

Refer to the following procedures:

- 3.3.4 Attaching A40D Header to an M205 Windrower, page 49
- 3.3.6 Routing A40D Header Hydraulic Drive Hoses, page 55

Refer to your windrower operator's manual for procedures to mechanically attach the auger header to the windrower, and for modifications (if required) to the windrower hydraulic connections.

# 3.3.1 Attaching A40D Header to M100 or M105 Windrower



# **WARNING**

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

M100 and M105 Self-Propelled Windrowers are factory-equipped with four header drive hoses (A) on the left side.



Figure 3.12: Header Drive Hoses

1. Shut down the engine, and remove the key from the ignition.

2. **For headers sold in North America:** Disengage rubber latch (A) and open driveshield (B).

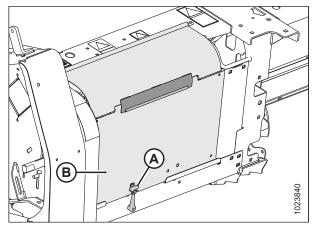



Figure 3.13: Driveshield – Headers Sold in North America

3. For headers sold outside North America: Insert a tool into hole (A) and pry to release latch (B). Disengage rubber latch (C) and open driveshield (D).

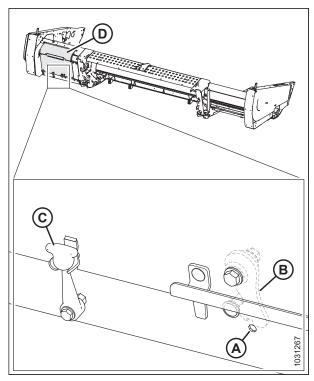



Figure 3.14: Driveshield – Headers Sold outside North America

Driveshield shown in the open position.

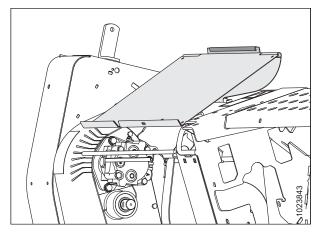



Figure 3.15: Driveshield Open

- 5. Remove cap (A) from the electrical connector and remove the connector from the support bracket.
- 6. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).

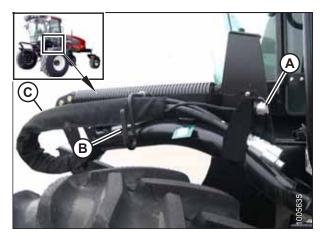



Figure 3.16: Support Bracket and Hose Bundle

- 7. Move hose/electrical bundle (A) to header.
- 8. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.
- 9. Remove cover on header electrical receptacle (E).
- 10. Push connector onto receptacle and turn collar on connector to lock it in place.
- 11. Attach cover to mating cover on windrower wiring harness.
- 12. Remove caps from hydraulic couplers. Clean if necessary.

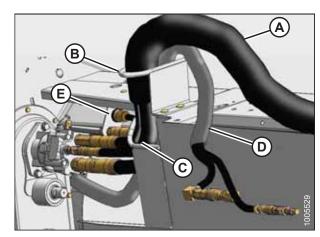



Figure 3.17: Hose and Electrical Bundle – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown (5.5 m [18 ft.] Header Similar)

13. Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.

## NOTE:

Hoses attached to connectors not shown in illustrations at right.

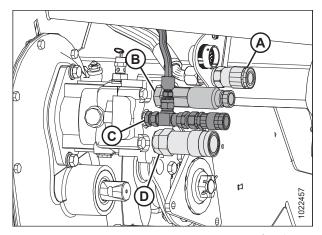



Figure 3.18: A40D Header – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown (5.5 m [18 ft.] Header Similar)

- A Reel Pressure
- B Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

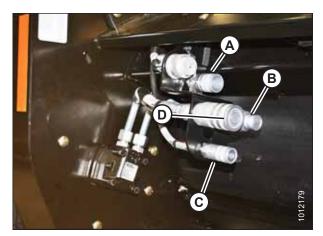



Figure 3.19: A40D Grass Seed Header Hose Connectors

- A Reel and Auger Pressure
- **B** Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

- 14. Route auger return and reel pressure hose bundle (A) from header to windrower, and position bundle above existing hose support (C) as shown.
- 15. Secure with three straps (D), and lower lever (B).

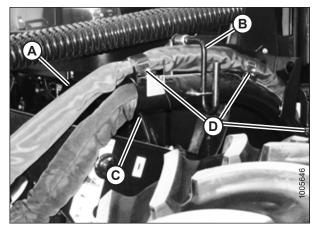



Figure 3.20: Auger Return and Reel Pressure Hose Bundle

16. If valve blocks are **NOT** configured as shown (A), install required fittings as described in the unloading and assembly instructions that were supplied with your A40D Auger Header.

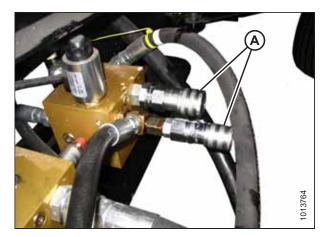



Figure 3.21: Valve Block Configuration

17. Push auger/reel pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.

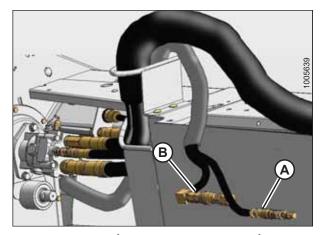



Figure 3.22: Auger/Reel Pressure and Auger/Reel Return Hose Couplers – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown (5.5 m [18 ft.] Header Similar)

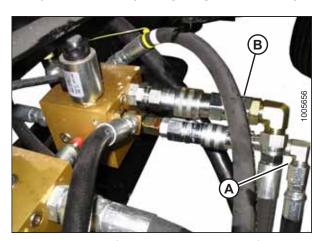



Figure 3.23: Auger/Reel Pressure and Auger/Reel Return Valve Block Receptacles

18. Check hose routing at the reel motor.

## NOTE:

The hose routing depends on which windrower model the header is being attached to. The header is factory configured for M150, M155, M155*E4*, and M200 Windrowers.

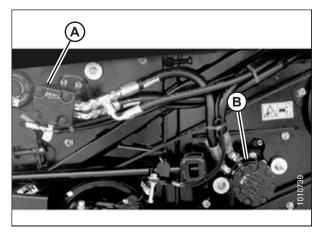



Figure 3.24: Factory Routing M150, M155, and M200

A - Reel Motor B - Auger Motor

19. For procedure to change hose routing for M100 or M105 Windrowers, refer to 3.3.6 Routing A40D Header Hydraulic Drive Hoses, page 55.

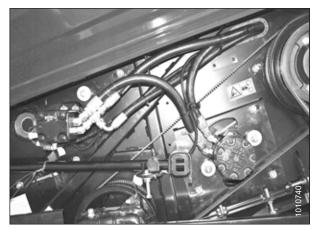



Figure 3.25: Modified Routing M100, M105, and M205

# 3.3.2 Attaching A40D Header to an M150, M155, or M155E4 Windrower



# **WARNING**

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

M150, M155, and M155*E4* self-propelled windrowers are factory-equipped with four header drive hoses (A) on the left side.



Figure 3.26: Header Drive Hoses

1. Shut down the engine, and remove the key from the ignition.

2. **For headers sold in North America:** Disengage rubber latch (A) and open driveshield (B).

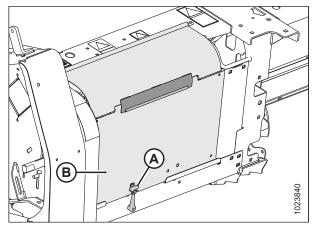



Figure 3.27: Driveshield – Headers Sold in North America

3. For headers sold outside North America: Insert a tool into hole (A) and pry to release latch (B). Disengage rubber latch (C) and open driveshield (D).

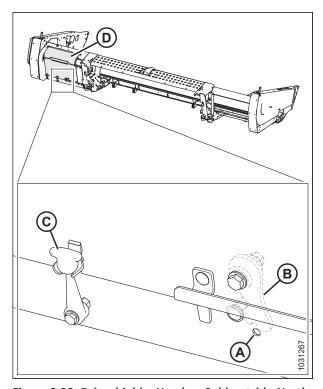



Figure 3.28: Driveshield – Headers Sold outside North America

Driveshield shown in the open position.

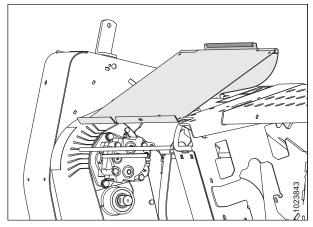



Figure 3.29: Driveshield Open

- 5. Remove cap (A) from electrical connector and remove connector from support bracket.
- 6. Disengage and rotate lever (B) counterclockwise to fully up position to release hose bundle (C).

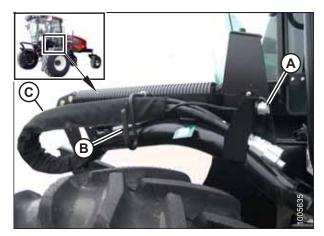



Figure 3.30: Support Bracket and Hose Bundle

- 7. Move hose/electrical bundle (A) to header.
- 8. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.
- 9. Remove cover on header electrical receptacle (E).
- 10. Push connector onto receptacle and turn collar on connector to lock it in place.
- 11. Attach cover to mating cover on windrower wiring harness.
- 12. Remove caps from hydraulic couplers. Clean if necessary.

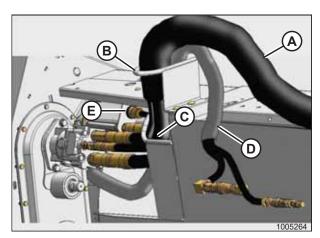



Figure 3.31: Hose and Electrical Bundle – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown (5.5 m [18 ft.] Header Similar)

13. Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.

## NOTE:

Hoses attached to connectors not shown in illustrations at right.

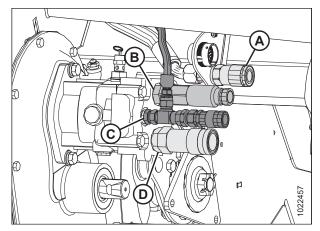



Figure 3.32: A40D Header – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown (5.5 m [18 ft.] Header Similar)

- A Reel Pressure
- B Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

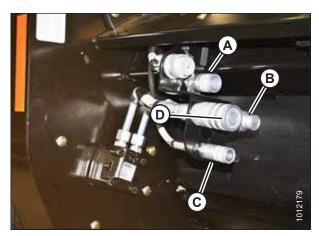



Figure 3.33: Grass Seed Header Hose Connectors

- A Reel and Auger Pressure
- **B** Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

- 14. Route auger return and reel pressure hose bundle (A) from header to windrower and position bundle above existing hose support (C) as shown.
- 15. Secure with three straps (D), and lower lever (B).



Figure 3.34: Auger Return and Reel Pressure Hose Bundle

16. If valve blocks are **NOT** configured as shown at right, install required fittings as described in the A40D Self-Propelled Windrower Auger Header Unloading and Assembly Instructions, which were supplied with your A40D Auger Header.

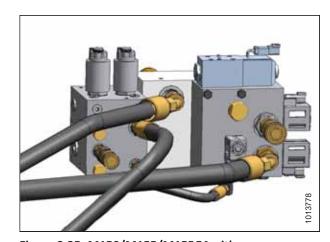



Figure 3.35: M150/M155/M155*E4* with Reverser Valve

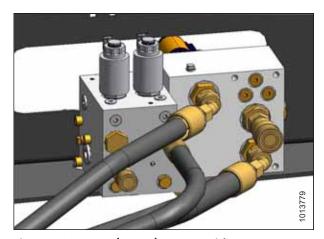



Figure 3.36: M150/M155/M155*E4* without Reverser Valve

- 17. Locate auger pressure (A) and auger/reel return (B) hoses.
- 18. Proceed to 3.3.5 Configuring Reverser Valve Jumper Hose for A40D, page 54.

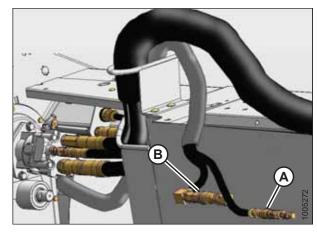



Figure 3.37: Auger Pressure and Auger/Reel Return Hose Couplers – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown (5.5 m [18 ft.] Header Similar)

19. Push auger pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.

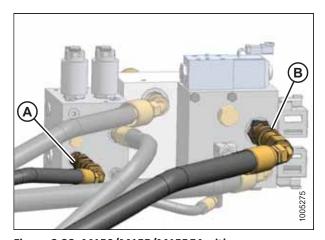



Figure 3.38: M150/M155/M155*E4* with Reverser Valve

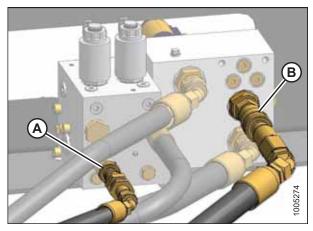



Figure 3.39: M150/M155/M155*E4* without Reverser Valve

# 3.3.3 Attaching A40D Header to M200 Windrower



# WARNING

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

The M200 Windrower requires four drive hoses (A) to run an A40D Auger Header.



Figure 3.40: Drive Hoses

If only three drive hoses are present, before following the procedure below, configure the M200 to run an A40D Auger Header by installing kit MD #B4651. The kit includes an additional hose (A), hardware, and installation instructions.



Figure 3.41: Auger Header Drive and Draper Header Reel Drive and Lift Plumbing Kit (MD #B4651)

# **OPERATION**

- 1. Shut down the engine, and remove the key from the ignition.
- 2. **For headers sold in North America:** Disengage rubber latch (A) and open driveshield (B).

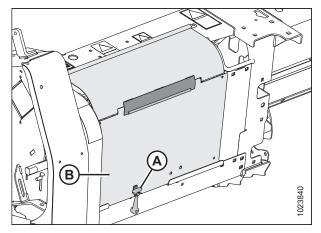



Figure 3.42: Driveshield – Headers Sold in North America

3. For headers sold outside North America: Insert a tool into hole (A) and pry to release latch (B). Disengage rubber latch (C) and open driveshield (D).

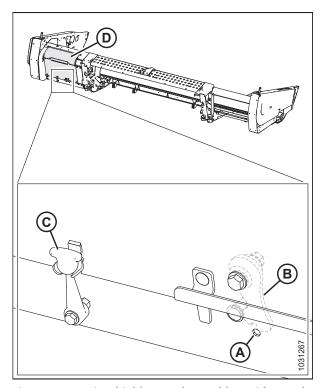



Figure 3.43: Driveshield – Headers Sold outside North America

Driveshield shown in the open position.

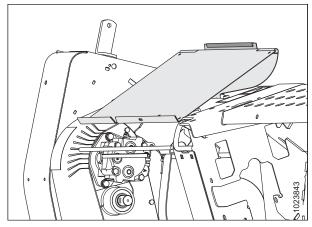



Figure 3.44: Driveshield Open

- 5. Remove cap (A) from electrical connector, and remove connector from support bracket.
- 6. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).



Figure 3.45: Support Bracket and Hose Bundle

- 7. Move hose/electrical bundle (A) to header.
- 8. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.
- 9. Remove cover on header electrical receptacle (E).
- 10. Push connector onto receptacle, and turn collar on connector to lock it in place.
- 11. Attach cover to mating cover on windrower wiring harness.
- 12. Remove caps from hydraulic couplers. Clean if necessary.

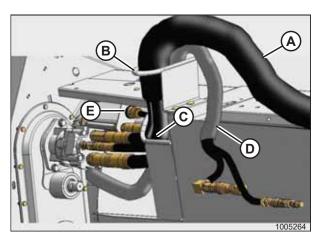



Figure 3.46: Hose and Electrical Bundle – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown (5.5 m [18 ft.] Header Similar)

## **OPERATION**

13. Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.

## NOTE:

Hoses attached to connectors not shown in illustrations at right.

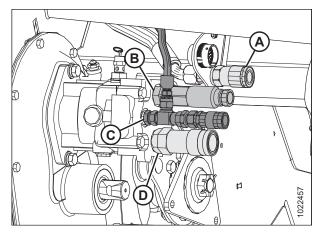



Figure 3.47: A40D Header – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown (5.5 m [18 ft.] Header Similar)

- A Reel Pressure
- B Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

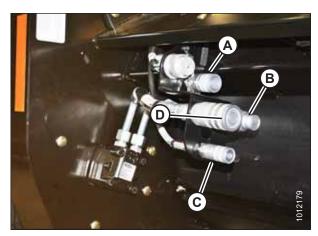



Figure 3.48: Grass Seed Header Hose Connectors

- A Reel and Auger Pressure
- B Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

- 14. Route auger return and reel pressure hose bundle (A) from header to windrower, and position bundle above existing hose support (C) as shown.
- 15. Secure with three straps (D), and lower lever (B).

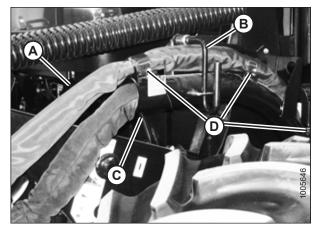



Figure 3.49: Auger Return and Reel Pressure Hose Bundle

16. If valve blocks are **NOT** configured as shown at right, install required fittings as described in the unloading and assembly instructions supplied with your A40D Auger Header.

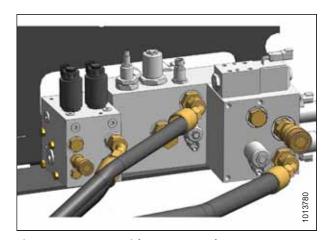



Figure 3.50: M200 with Reverser Valve

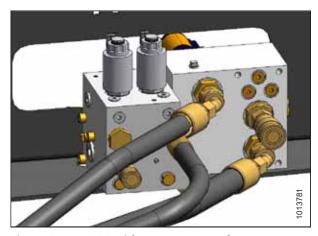



Figure 3.51: M200 without Reverser Valve

17. Locate auger pressure (A) and auger/reel return (B) hoses.

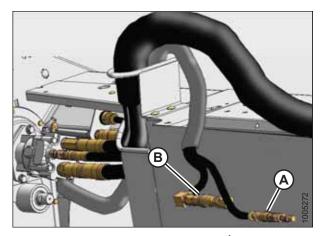



Figure 3.52: Auger Pressure and Auger/Reel Return Hose Couplers – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown (5.5 m [18 ft.] Header Similar)

- 18. Push auger pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.
- If valve blocks are NOT configured as shown above, install required fittings as described in the unloading and assembly instructions supplied with your A40D Auger Header.

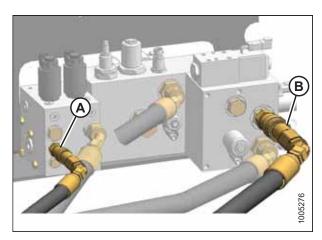



Figure 3.53: M200 with Reverser Valve

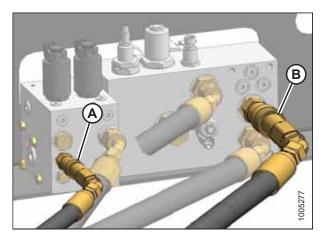



Figure 3.54: M200 without Reverser Valve

20. Proceed to 3.3.5 Configuring Reverser Valve Jumper Hose for A40D, page 54.

# 3.3.4 Attaching A40D Header to an M205 Windrower



# **WARNING**

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

The M205 Windrower must be equipped with an auger drive basic kit and a completion kit as shown at right. If necessary, order and install the following kits shown in the table below. Installation instructions are supplied with the kits.

| Kit Description           | MacDon Part Number |
|---------------------------|--------------------|
| Base kit                  | MD #B5491          |
| Reverser kit <sup>1</sup> | MD #B5492          |
| Coupler                   | MD #B5497          |

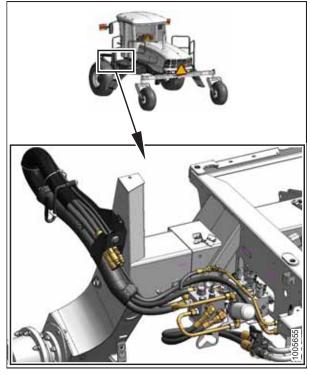



Figure 3.55: Auger Drive Basic Kit and Completion Kit Installed

- 1. Shut down the engine, and remove the key from the ignition.
- 2. **Headers sold in North America:** Disengage rubber latch (A) and open driveshield (B).

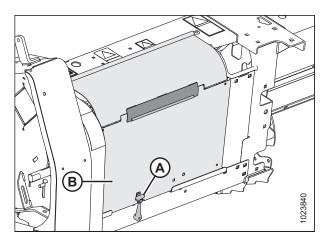



Figure 3.56: Driveshield – Headers Sold in North America

<sup>1.</sup> Reverser kit is **REQUIRED**. Install prior to hook-up.

3. **Headers sold outside North America:** Insert a tool into hole (A) and pry to release latch (B). Disengage rubber latch (C) and open driveshield (D).

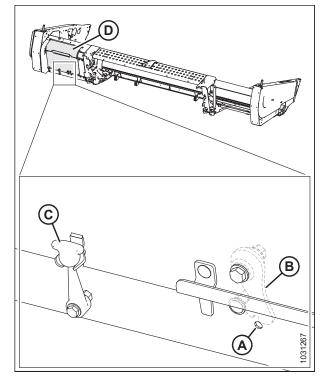



Figure 3.57: Driveshield – Headers Sold outside North America

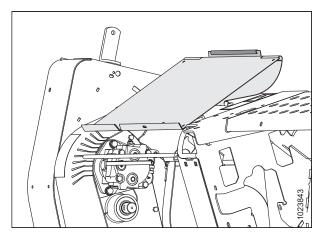



Figure 3.58: Driveshield Open

Driveshield shown in the open position.

- 5. Remove cap (A) from the electrical connector and remove the connector from the support bracket.
- 6. Disengage and rotate lever (B) counterclockwise to the raised position to release the hose bundle (C).



Figure 3.59: Support Bracket and Hose Bundle

- 7. Move hose/electrical bundle (A) to the header.
- 8. Route bundle (A) from the windrower through support (B) and access hole (C) in the header frame alongside existing hose bundle (D) from the header.
- 9. Remove the cover from header electrical receptacle (E).
- 10. Push the connector onto the receptacle and turn the collar on the connector to lock it in place.
- 11. Attach the cover to the mating cover on the windrower wiring harness.
- 12. Remove the caps from the hydraulic couplers. Clean if necessary.

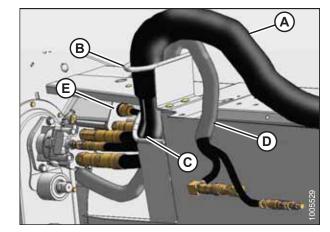



Figure 3.60: Hose and Electrical Bundle – 4.9 m (16 ft.) Header Shown, 5.5 m (18 ft.) Header Similar

### **OPERATION**

- 13. **A40D standard headers:** Push the following hose connectors onto the mating receptacles as shown until the collars on the receptacles snap into lock position:
  - Reel/auger pressure (A)
  - Knife and conditioner return (B)
  - Case drain (C)
  - Knife and conditioner pressure (D)

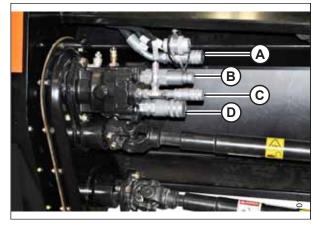



Figure 3.61: A40D Hose Connections – 4.9 m (16 ft.) Header Shown



Figure 3.62: A40D Hose Connections – 5.4 m (18 ft.) Header Shown

- 14. **A40D GSS headers:** Push the following hose connectors onto the mating receptacles as shown until the collars on the receptacles snap into lock position:
  - Reel/auger pressure (A)
  - Knife and conditioner return (B)
  - Case drain (C)
  - Knife and conditioner pressure (D)

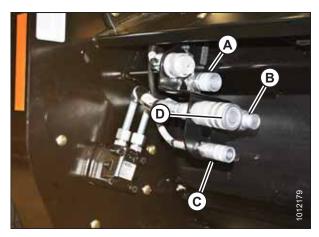



Figure 3.63: A40D GSS Hose Connections – 4.9 m (16 ft. header)

- 15. Route auger return/reel pressure hose bundle (A) from the header to the windrower, and position the bundle above existing hose support (C) as shown.
- 16. Secure with three straps (D), and lower lever (B).

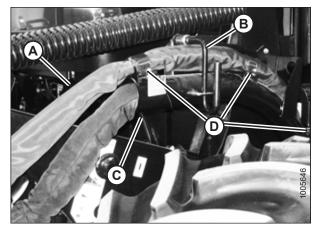



Figure 3.64: Auger Return and Reel Pressure Hose Bundle

17. Push auger/reel pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on manifold until collar on receptacle snaps into lock position.

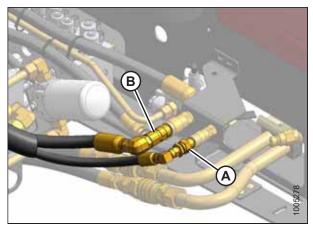



Figure 3.65: Auger/Reel Pressure and Auger/Reel Return Hose Couplers

- 18. Check reel pressure line (A) connection to the reel drive motor (B). Connect the reel pressure line to a different port on the reel motor port depending on the model of windrower:
  - If attaching the header to an M150, M155, M155E4, or M200, do NOT change the reel pressure connection to the motor, UNLESS switching to windrower models M100, M105, or M205. All model years of A40D / A40D GSS are factory-configured for M150, M155, M155E4, and M200.
  - Before attaching the header to an M100, M105, or M205 move the reel pressure line connection (A) to the other port (C). Refer to 3.3.6 Routing A40D Header Hydraulic Drive Hoses, page 55.

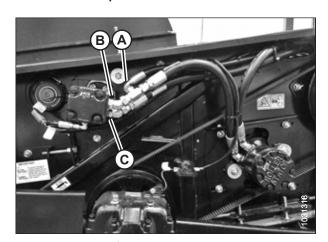



Figure 3.66: A40D/A40D GSS Header – Factory Configuration for M150, M155, M155*E4* and M200

# 3.3.5 Configuring Reverser Valve Jumper Hose for A40D

An optional reverser valve block (A) to reverse the header drive in the event of plugging may have been installed on M150, M155, and M200 Self-Propelled Windrowers. A jumper hose on this valve block has a specific routing for each model of header.

#### NOTE:

If a reverser valve block (A) has been installed, the jumper hose (B) must be routed for the correct header model. Do **NOT** operate the header unless hose is routed as shown.

### NOTE:

**ONLY** for draper headers with conditioner installed and **ONLY** for the M150, M155, and M200 windrowers: CR is routed to port R4 (not shown) on reverser block. When switching from draper header to auger header, jumper hose (B) must be routed according to the header being operated to prevent draper header reel damage and improper operation.

To reroute jumper hose from draper header position to A40D position, follow these steps:

- 1. Move left windrower platform to open position to expose hydraulic valve blocks.
- 2. Disconnect jumper hose (B) from 90 degree fitting (C) at port R4 on the reverser valve block (A).
- Rotate 90 degree fitting (D) under reverser valve block so hose can be routed to port C2 at (C) as shown in Figure 3.69, page 55.

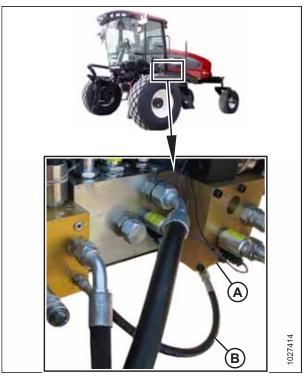



Figure 3.67: A40D Hose (B) Position (A40D on M200 Shown; M150, M155, and M155*E4* Similar)

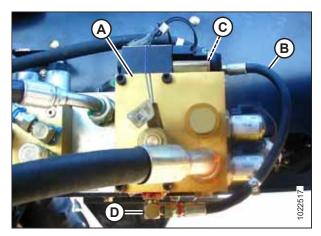



Figure 3.68: Draper Header Hose Position (M150 Shown; M200, M155, and M155*E*4 Similar)

- 4. Remove cap from port C2 fitting (A) on the header drive valve block (B).
- 5. Connect jumper hose (C) to port C2 fitting (A) on header drive valve block (B).
- 6. Install previously removed cap onto 90 degree fitting in port R4 on reverser valve block (D).
- 7. Move left windrower platform back to normal operating position.

The draper header reverser function is suppressed unless hay conditioner is activated in Windrower Setup using the cab display module (CDM).

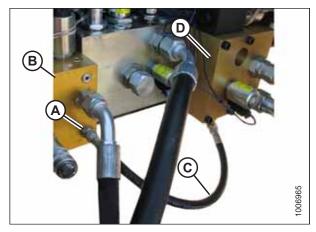



Figure 3.69: Connected Jumper Hose

## 3.3.6 Routing A40D Header Hydraulic Drive Hoses

The A40D Auger Header hydraulic drive hose routing depends on the windrower model to which the header is being attached.

A40D Headers are factory-configured for M150, M155, M155E4, and M200 Windrowers as shown in Figure 3.76, page 58.

To route hoses for M100, M105, and M205 Windrowers, proceed as follows:



## **WARNING**

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Press screwdriver against latch in opening (A) and lift to open header left endshield. Shield will latch at location (B) to stay open.

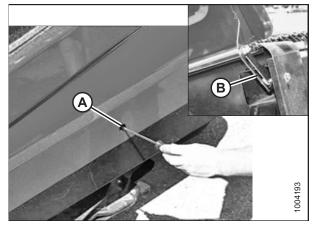



Figure 3.70: Left Endshield

3. **Headers sold in North America:** Disengage rubber latch (A) and open driveshield (B).

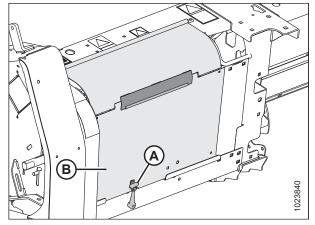



Figure 3.71: Driveshield – Headers Sold in North America

4. **Headers sold outside North America:** Insert a tool into hole (A) and pry to release latch (B). Disengage rubber latch (C) and open driveshield (D).

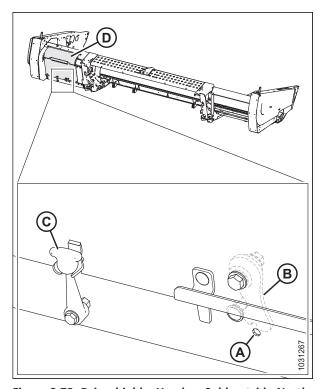



Figure 3.72: Driveshield – Headers Sold outside North America

Driveshield shown in the open position.

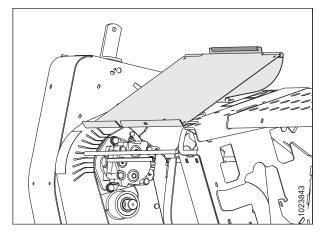



Figure 3.73: Driveshield Open

6. Loosen bulkhead nut (A) on auger and reel pressure coupler (B). This allows auger and reel pressure hose (C) to rotate freely.

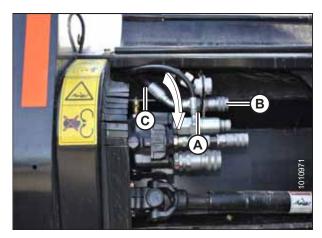



Figure 3.74: Auger and Reel Pressure Coupler and Hose – 4.9 m (16 ft.) Header Shown

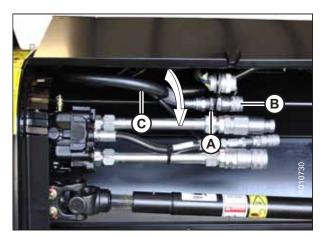



Figure 3.75: Auger and Reel Pressure Coupler and Hose – 5.5 m (18 ft.) Header Shown

#### 7. Disconnect hoses as follows:

- a. Disconnect hose (A) from tee (B).
- b. Disconnect tee (B) from the reel motor upper port.
- c. Disconnect hose (C) from the reel motor lower port.
- 8. Cut cable ties (D) at locations shown in illustration.

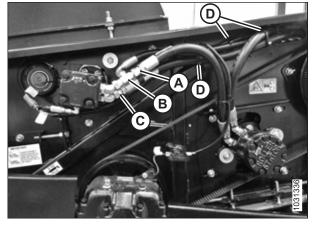



Figure 3.76: Factory Configuration – M150, M155, M155E4, and M200

### 9. Reconnect hoses as follows:

- a. Reroute hose (E) behind hose (A) and (F) to hose (C) and connect tee (B) to the lower port fitting.
- b. Reroute hose (C) above hose (E) and (F) and connect hose (C) to tee (B). Tighten hose (C).
- c. Loosen 45° fittings at both ports. This allows room for wrenches when tightening tee (B) to lower port.
- d. Connect hose (A) to upper port fitting as shown and check orientation of 45° fitting.

#### NOTE

Ensure that hose (A) is routed in front of hose (C) and hose (E).

- e. Confirm orientation of the upper port 45° fitting, backoff tee (B), and tighten the upper port fitting in position determined. Tighten hose (A).
- f. Check orientation of the lower port 45° fitting and tighten.
- g. Connect tee (B) to the lower port 45° fitting and tighten.

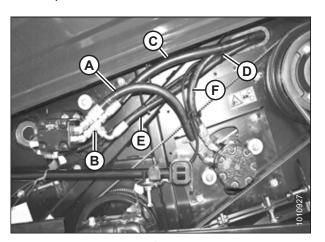



Figure 3.77: Adjusted Configuration – M100, M105, and M205

10. Secure hose routing with cable ties (A) as shown.

#### **IMPORTANT:**

Ensure that electrical harness (B) and reel motor case drain hose (C) are secured to hose (D) and that there is at least 25 mm (1 in.) clearance between hose bundle (E) and knife drive timing belt (F).

### **IMPORTANT:**

Ensure there is enough clearance between the hoses and any hardware that may need to be accessed to adjust the reel or auger.

- 11. Orient fittings and, if necessary, use a cable tie to ensure a minimum clearance of 20 mm (3/4 in.) between hoses and bolt at location (G).
- 12. Orient fittings to provide minimum 10 mm (3/8 in.) clearance between hoses and unplug tool at location (H).
- 13. Orient fittings to provide minimum 200 mm (7 7/8 in.) clearance between end panel and hoses in location (J).
- 14. Rotate coupler (B) and hose (C) downward as shown until slack has been sufficiently reduced. Tighten bulkhead nut (A).

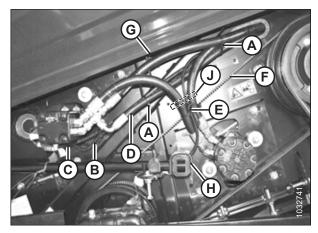



Figure 3.78: Adjusted Configuration – M100, M105, and M205

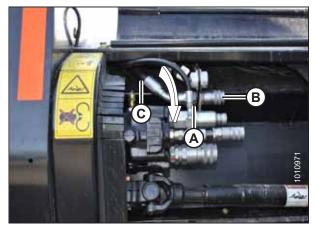



Figure 3.79: Auger and Reel Pressure Coupler and Hose – 4.3 m and 4.9 m (14 ft. and 16 ft.) Header Shown



Figure 3.80: Auger and Reel Pressure Coupler and Hose – 5.5 m (18 ft.) Header Shown

15. **Headers sold in North America:** Close driveshield (B) and engage rubber latch (A).

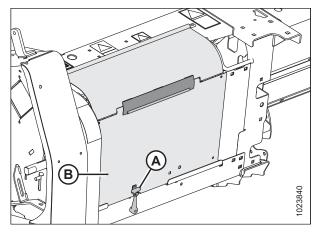



Figure 3.81: Driveshield – Headers Sold in North America

- 16. **Headers sold outside North America:** Close driveshield (A). Latch (B) will automatically latch. Engage rubber latch (C).
- 17. Close driveshield before engaging header.

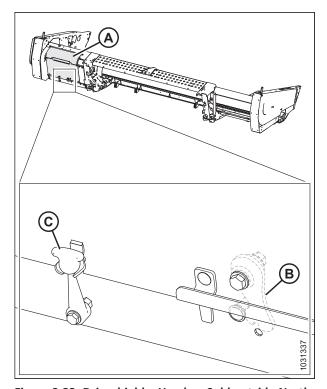



Figure 3.82: Driveshield – Headers Sold outside North America

#### **Detaching A40D Header from M Series Windrower** 3.4



# **MARNING**

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

- Move left cab-forward platform to rear of windrower.
- Refer to the illustration relevant to your equipment, and disconnect hydraulic hoses (A) and (B) from windrower valve(s).

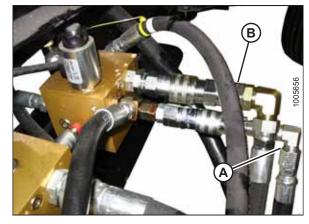



Figure 3.83: M100 and M105

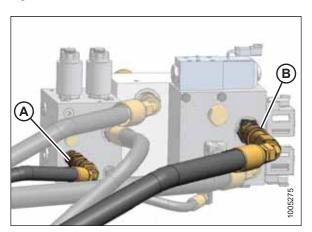



Figure 3.84: M150 with Reverser Valve - M155 and M155E4 Similar

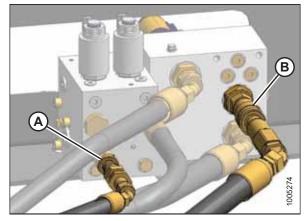



Figure 3.85: M150 without Reverser Valve - M155 and M155E4 Similar

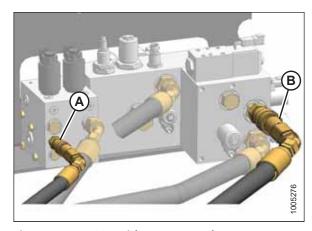



Figure 3.86: M200 with Reverser Valve

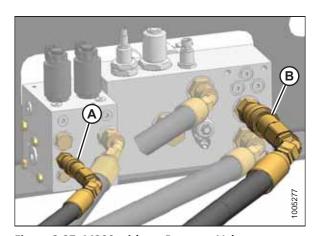



Figure 3.87: M200 without Reverser Valve

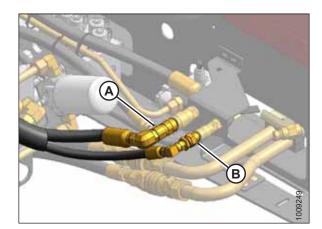



Figure 3.88: M205

### **OPERATION**

- 3. Raise lever (B) on hose support (C), and undo three adjustable straps (D).
- 4. Move hose bundle (A) to store on header walkway.
- 5. Install caps on connectors and hose ends (if equipped).
- A B 989001

Figure 3.89: Hose Bundle

- 6. **A40D standard headers:** At the header, disconnect electrical connector (E) by turning collar counterclockwise, and pulling connector to disengage. Disconnect hoses from the following hoses:
  - Reel/auger pressure (A)
  - Knife and conditioner return (B)
  - Case drain (C)
  - Knife and conditioner pressure (D)

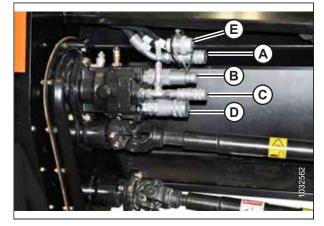



Figure 3.90: A40D Hose Connections – 4.9 m (16 ft.) Header Shown

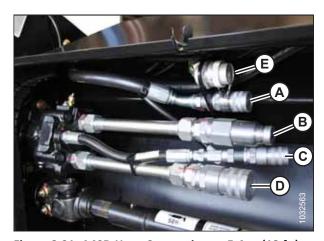



Figure 3.91: A40D Hose Connections – 5.4 m (18 ft.) Header Shown

- 7. **A40D GSS headers:** At the header, disconnect electrical connector (E) by turning collar counterclockwise, and pulling connector to disengage. Disconnect hoses from the following hoses:
  - Reel/auger pressure (A)
  - Knife and conditioner return (B)
  - Case drain (C)
  - Knife and conditioner pressure (D)

- 8. Move hose bundle (A) from header, and position on windrower left side with hose ends in support (B) and under lever (C).
- 9. Rotate lever (C) clockwise, and push to engage bracket.
- 10. Position electrical harness through support (B), and attach cap to electrical connector.
- 11. Close driveshield, and move windrower platform to closed position.
- 12. Check to ensure hoses and electrical harness clear tire.
- 13. Detach header from windrower. For instructions, refer to your windrower operator's manual.

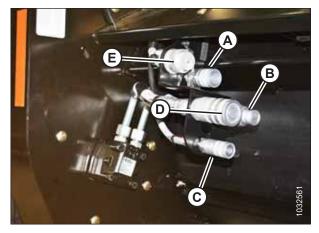



Figure 3.92: A40D GSS Hose Connections – 4.9 m (16 ft. header)



Figure 3.93: Hose Bundle Storage

# 3.5 Header Lift Cylinder Lock-Out Valves

Refer to your windrower operator's manual for information about the lift cylinder lock-out valves.

### **OPERATION**

## 3.6 Operating Variables

Satisfactory function of the header in all situations requires making proper adjustments to suit various crops and conditions.

Correct operation reduces crop loss and allows cutting of more acres. As well, proper adjustments and timely maintenance will increase the length of service you receive from the machine.

The variables listed below and detailed on the following pages will affect the performance of the header. You will quickly become adept at adjusting the machine to give you the desired results.

**Table 3.1 Header Adjustments** 

| Variable                           | Refer to                                                          |
|------------------------------------|-------------------------------------------------------------------|
| Lean bar position                  | 3.6.1 Setting Lean Bar, page 67                                   |
| Auger speed                        | 3.6.2 Adjusting Auger Speed, page 67                              |
| Reel speed                         | 3.6.3 Adjusting Reel Speed, page 67                               |
| Auger position                     | 3.6.4 Setting Auger Position, page 67                             |
| Reel position                      | 3.6.5 Setting Reel Position, page 70                              |
| Tine aggressiveness adjustment     | 3.6.6 Setting Tine Aggressiveness, page 74                        |
| Cutting height                     | 3.6.8 Setting Cutting Height, page 75                             |
| Header angle                       | 3.6.7 Adjusting Header Angle, page 75                             |
| Header float                       | 3.6.9 Checking and Adjusting Float – M Series Windrowers, page 76 |
| Feed pan / rock drop tine position | 3.6.11 Setting Feed Pan and Rock Drop Tine Position, page 80      |
| Roll gap                           | 3.6.12 Adjusting Conditioner Roll Gap, page 81                    |
| Roll timing                        | 4.13.11 Checking/Adjusting Roll Timing, page 187                  |
| Roll alignment                     | 4.13.10 Checking/Adjusting Roll Alignment, page 185               |
| Roll tension                       | 3.6.13 Adjusting Conditioner Roll Tension, page 82                |
| Forming shields                    | 3.6.14 Positioning the Forming Shields, page 83                   |
| Tall crop dividers                 | 3.11.1 Adjusting Tall Crop Dividers, page 97                      |
| Ground speed                       | 3.10 Selecting Ground Speed, page 96                              |

## 3.6.1 Setting Lean Bar

Use the lean bar adjustment to accommodate different crop heights. The lean bar (A) should strike the upper portion of the crop (roughly 2/3 of the crop height), leaning it away from the header, and exposing the stalks to the knife.

#### **IMPORTANT:**

To prevent structural damage to the header, do **NOT** operate with lean bar removed.

To extend or retract lean bar (A), reposition hardware in adjustment holes as required.

In crops over 1.52 m (5 ft.) high, an optional tall crop divider kit (MD #B4690) is available that includes lean bar extensions to raise the lean bar. For more information refer to 3.11.1 Adjusting Tall Crop Dividers, page 97.

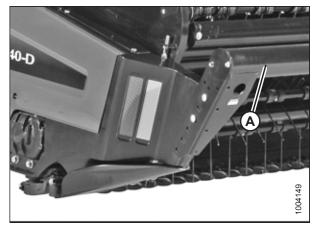



Figure 3.94: Auger Header Lean Bar

## 3.6.2 Adjusting Auger Speed

An A40 auger header features a hydraulic direct drive auger with operating speed range of 230 to 320 rpm, and is controlled from the operator's station on the self-propelled windrower.

For instructions, refer to your windrower operator's manual.

## 3.6.3 Adjusting Reel Speed

An A40 auger header features a hydraulic direct drive reel with operating speed ranges of 50 to 85 rpm for M100, M105, M200, M205, as well as M1170 and M1240 models with standard reel configuration.

Operating speed ranges of 15 to 85 rpm are available for M150, M155, M155*E*4, as well as M1170 and M1240 models with reel variable speed kit installed.

#### NOTE:

A40DX GSS headers are factory-fitted with reel variable speed option.

For instructions, refer to your windrower operator's manual.

## 3.6.4 Setting Auger Position



## **CAUTION**

To avoid personal injury, before servicing header or opening drive covers, follow procedures in 4.1 Preparing for Servicing, page 103.

Auger position has been factory-set, and should not normally require adjustment.

For nearly all conditions, the auger performs best when set as close as possible to the stripper bars without rubbing. This is especially important in grass and other crops that have a tendency to wrap.

Component wear may cause clearances to become excessive, resulting in feeding problems and uneven windrows.

To make adjustments to auger position, refer to these sections depending on your equipment:

- Adjusting Auger Fore-Aft Position, page 68
- Adjusting Vertical Position, page 69

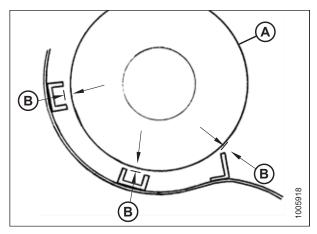



Figure 3.95: Clearance between Auger and Stripper Bars on the Auger Pan

A - Auger

B - Clearance 1-4 mm (1/32-5/32 in.)

#### NOTE:

In heavier crops it may be necessary to remove the front stripper bar for smoother crop flow across the auger. Refer to 4.12 Stripper Bar, page 165.

#### NOTE:

Auger to stripper bar adjustment is most accurately checked and set with the header in the working position. The auger should clear the stripper bars on the auger pan by approximately 1–4 mm (1/32–5/32 in.). Shimming the stripper bars may be required. Refer to 4.12 Stripper Bar, page 165.

Adjusting Auger Fore-Aft Position



## **WARNING**

- 1. Shut off engine and remove key.
- 2. Open left endshield.
- 3. Loosen four nuts (A).
- 4. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust auger fore-aft position.
- 5. Tighten jam nut.
- 6. Tighten nuts (A).

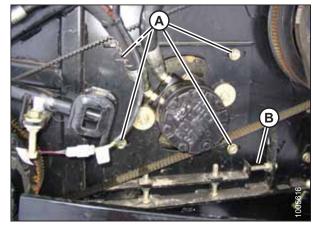



Figure 3.96: A40D Left Side

- 7. Open right endshield.
- 8. Loosen four nuts (A).
- 9. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust auger fore-aft position.
- 10. Tighten jam nut.
- 11. Tighten nuts (A).
- 12. Close shields before engaging header.

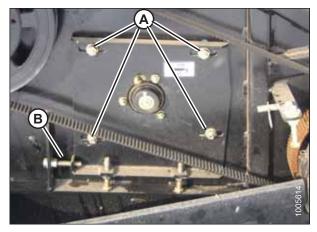



Figure 3.97: A40D Right Side

## Adjusting Vertical Position



## **WARNING**

- 1. Shut off engine and remove key.
- 2. Open left endshield.
- 3. Loosen four nuts (A).
- 4. Loosen jam nuts on adjuster bolts (B), and turn bolts (B) to adjust auger vertical position.
- 5. Tighten jam nuts.
- 6. Tighten nuts (A).

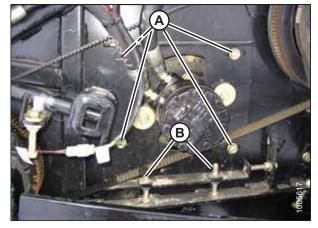



Figure 3.98: A40D Left Side

- 7. Open right endshield.
- 8. Loosen four nuts (A).
- 9. Loosen jam nut on adjuster bolts (B), and turn bolts (B) to adjust auger fore-aft position.
- 10. Tighten jam nut.
- 11. Tighten nuts (A).
- 12. Close shields before engaging header.

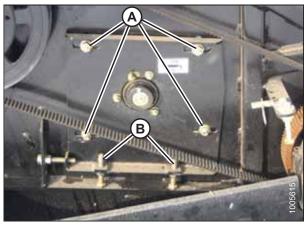



Figure 3.99: A40D Right Side

## 3.6.5 Setting Reel Position

Reel position has been found to be a critical factor in achieving good results in adverse conditions. Reel position is factory-set for average straight standing crop. It can be adjusted both vertically and horizontally (fore-aft) for different crop conditions.

See table below for recommended reel position in unusual crop conditions:

| Crop Condition                                             | Reel Position                               |
|------------------------------------------------------------|---------------------------------------------|
| Crop down or lodged                                        | Forward and down (also increase reel speed) |
| Wet or dead material collects on cutterbar and plugs knife | Back and down (close to guards)             |
| Short crop                                                 | Back                                        |
| Thick stemmed or heavy standing                            | Up and forward                              |

To make adjustments to reel position, refer to the following sections:

- Adjusting Reel Fore-Aft Position, page 70
- Adjusting Reel Vertical Position, page 71

## Adjusting Reel Fore-Aft Position

The reel fore-aft offset is factory-set to 816 mm (32 3/8 in.) as measured from the inside edge of the reel tube to the back frame member as shown in the illustration at right.

### NOTE:

The reel must be adjusted equally on both sides.



Figure 3.100: Measuring Reel Fore-Aft Offset



## **WARNING**

- 1. Shut off engine and remove key.
- 2. Open left endshield.
- 3. Loosen four nuts (A).
- 4. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust reel fore-aft position.
- 5. Tighten jam nut.
- 6. Tighten nuts (A).

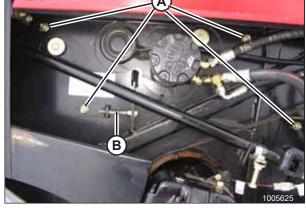



Figure 3.101: Auger Header Left Side

- 7. Open right endshield.
- 8. Loosen four nuts (A).
- 9. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust reel fore-aft position.
- 10. Tighten jam nut.
- 11. Tighten nuts (A).
- 12. Close driveshields before engaging header.

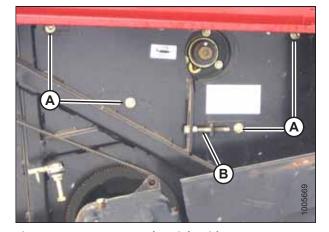



Figure 3.102: Auger Header Right Side

## Adjusting Reel Vertical Position



## **WARNING**

- 1. Shut off engine and remove key.
- 2. Open left endshield.
- 3. Loosen four nuts (A).

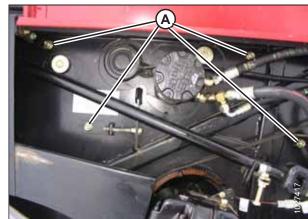



Figure 3.103: Auger Header Left Side

- 4. Loosen jam nuts on adjuster bolts (A), and turn bolts (A) to raise or lower reel.
- 5. Tighten jam nuts (A).



- 7. Open right endshield.
- 8. Loosen four nuts (A).

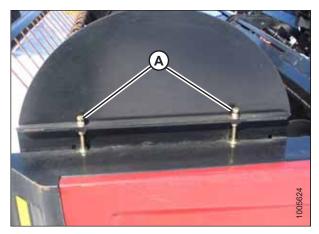



Figure 3.104: Auger Header Left Side

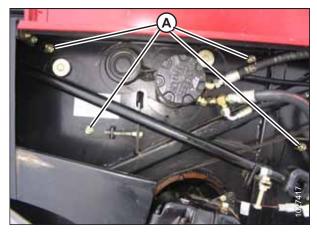



Figure 3.105: Auger Header Left Side



Figure 3.106: Auger Header Right Side

9. Loosen jam nuts on adjuster bolts (A), and turn bolts (A) to adjust reel vertical position.

### NOTE:

The factory setting at forward adjuster bolt should be 12 mm (15/32 in.) lower than at rear adjuster bolt. If tine aggressiveness has changed, then the adjuster bolt offset may not equal factory settings. Always measure the adjuster bolt offset and maintain throughout the vertical adjustment.

10. Tighten jam nuts.

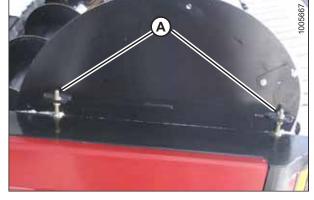



Figure 3.107: Auger Header Left Side

- 11. Tighten nuts (A).
- 12. Close shields before engaging header.
- 13. Check that the reel rotates freely.

### NOTE:

Manually rotate reel, and ensure that tines do not contact header pan, otherwise damage to pan will result. If necessary, grind off excessive length from tine if tine length varies considerably. Remove any sharp edges or burrs from tine.

14. Check that reel is evenly adjusted.

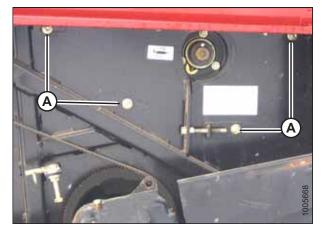



Figure 3.108: Auger Header Right Side

### Checking Reel Tine to Header Pan Clearance

### **IMPORTANT:**

The dimensions at right are provided as guidelines only. Tines may slightly contact the guards, but **NOT** the knife sections or the auger pan.

- Rotate reel slowly by hand, and check tine clearance at knife and pan. Flex tines to simulate crop-loaded position to ensure tine clearances to knife sections and auger pan are adequate for working conditions.
- 2. Check that reel rotates freely.

#### NOTE:

If there are a few reel tines that are touching the pan while the rest are at the correct height, trim the longer tines to match the rest. Be sure to adjust both sides of the reel. Ensure that tines do **NOT** contact plastic header pan.

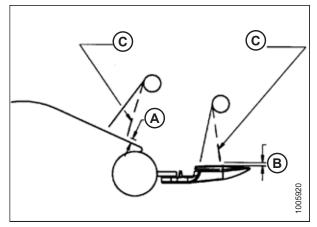



Figure 3.109: Reel Tine Clearance

- A 2-10 mm (2/25-2/5 in.)
- B 2 mm (2/25 in.) Minimum to Knife Section
- C Flex Fingers Back when Checking Clearance

## 3.6.6 Setting Tine Aggressiveness



## **WARNING**

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

- 1. Shut off engine and remove key.
- 2. Open right endshield.
- 3. At right side of reel (cam end) **ONLY**, loosen four nuts (A).



Figure 3.110: Auger Header Right Side

4. Loosen jam nuts on bolts (A), and turn bolts to rotate cam to desired position. Viewed from right side, rotate cam clockwise to obtain more aggressive tine action.

### NOTE:

The factory setting at forward adjuster bolt should be 12 mm (0.47 in.) lower than at rear adjuster bolt. If tine aggressiveness has changed, then the adjuster bolt offset may not equal factory settings. Always measure the adjuster bolt offset and maintain throughout the vertical adjustment.

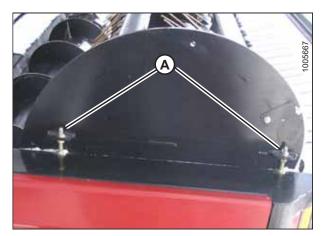



Figure 3.111: Auger Header Right Side

- 5. Tighten nuts (A), and jam nuts on bolts.
- 6. Check that chain and/or belt have not become over-tight. Adjust to recommended tension if required.
- 7. Check reel tine to header pan clearance to ensure that there is no contact between reel tines and the header pan. Refer to Checking Reel Tine to Header Pan Clearance, page 73.




Figure 3.112: Auger Header Right Side

## 3.6.7 Adjusting Header Angle

Header angle can be hydraulically adjusted from the cab using hydraulic cylinder (A), without shutting down the windrower.

#### NOTE:

Some M100, M105, M150, and M155 models are equipped with a mechanical link. For instructions on adjusting header angle, refer to your windrower operator's manual.

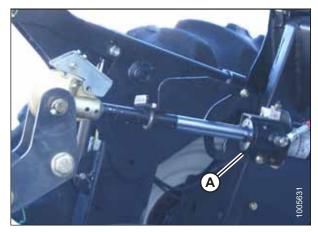



Figure 3.113: Header Angle Hydraulic Cylinder

## 3.6.8 Setting Cutting Height



## WARNING

- Raise header, and engage header lift cylinder lock-out valves.
- 2. Remove pins (A) at each skid shoe or gauge roller.
- 3. Raise or lower skid shoe or gauge roller to desired position.
- 4. Replace pins (A).

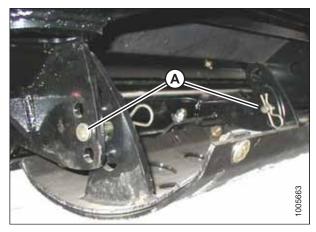



Figure 3.114: Skid Shoe

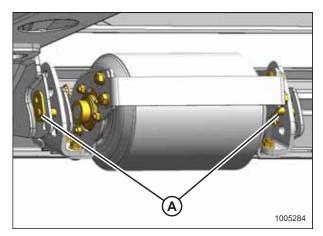



Figure 3.115: Gauge Roller

- 5. Check that skid shoes or gauge rollers are adjusted to the same position.
- 6. Check header float, and adjust if required. Refer to 3.6.9 Checking and Adjusting Float M Series Windrowers, page 76 for more information.

The two inboard skid shoes are standard equipment. The inboard shoes can be moved to the outboard position OR outboard positions can be fitted with either gauge rollers or skid shoes.

## 3.6.9 Checking and Adjusting Float – M Series Windrowers

The windrower float springs are **NOT** used to level the header.



## WARNING

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.



## **WARNING**

Never start or move the machine until you are sure all bystanders have cleared the area.

Always check the float with the header set in working position (with the header fully lowered to the ground and the header angle set to the desired cutting height per crop type and conditions).

To check and adjust the float, follow these steps:

- 1. Start the engine, and lower the header to the ground.
- 2. Using the header tilt switches on the in-cab controls, set the header center-link to the mid-range position (5.0 on the cab display module). Refer to your windrower operator's manual for detailed instructions.
- 3. Lower the header fully with the lift cylinders fully retracted.
- 4. Set left and right float fine adjustments to mid-range position (5.0 on the cab display module). Refer to your windrower operator's manual for detailed instructions.
- 5. Shut down the engine, and remove the key from the ignition.
- 6. Check float by grasping the lean bar and lifting. Lifting force should be 335–380 N (75–85 lbf) and should be approximately the same at both ends.
- 7. If necessary, perform the following steps to adjust the float:
  - a. Raise header fully, shut down engine, and remove key.
  - Turn drawbolt (A) clockwise to increase float (makes header lighter) or counterclockwise to decrease float (makes header heavier).

#### NOTE:

Illustration shows top of windrower wheel leg member.

c. Recheck the float.



Figure 3.116: Drawbolt

## 3.6.10 Checking and Adjusting Float – M1 Series Windrower

Header float on M1170 and M1240 Windrowers is completely adjustable from the cab through the Harvest Performance Tracker (HPT).

The windrower float springs are **NOT** used to level the header.

Checking Float – M1 Series Windrowers



## WARNING

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.



## **CAUTION**

Before starting the machine, check to be sure all bystanders have cleared the area.

- 1. Start the engine.
- Use HEADER TILT switches (A) on the ground speed lever (GSL) to set the center-link to the mid-range position (5.0 on the Harvest Performance Tracker [HPT]).
- 3. Using HEADER DOWN switch (B), lower the header fully and with the header lift cylinders fully retracted.

Ensure the header is level with the ground with zero tilt.

- 4. Shut down the engine, and remove the key from the ignition.
- Grasp one end of the header and lift. Lifting force should be 335–380 N (75–85 lbf) and should be the same at both ends.

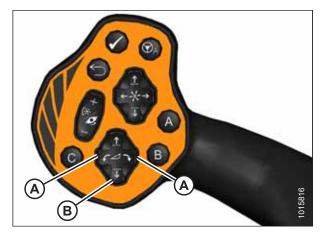



Figure 3.117: GSL

6. Restart the engine, and adjust float as required. For instructions, refer to Setting the Float, page 78.

#### NOTE:

Increasing the float value on the HPT makes the header feel lighter.

### Setting the Float

The float can be set for windrowing with the cutterbar on the ground.

The optimum float setting lets the header follow the contour of the terrain. Proceed as follows:

- Set center-link to mid-range position (5.0 on the Harvest Performance Tracker [HPT]). For instructions, refer to the windrower operator's manual.
- 2. Lower the header until the cutterbar is on the ground.

### NOTE:

To minimize scooping rocks when operating at the flattest header angle, lower the header skid shoes. For instructions, refer to your header operator's manual.

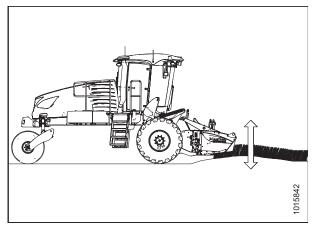



Figure 3.118: Header Float - Cutterbar on Ground

- 3. Press rotary scroll knob (A) on the to display the QuickMenu system.
- 4. Rotate scroll knob (A) to highlight header float icon (B) and press scroll knob to select.



Figure 3.119: HPT Run Screen

- 5. Turn scroll knob (A) to highlight left (B) or right (C) float and press knob (A) to activate selection.
- 6. Rotate scroll knob (A) to adjust float setting and press knob when finished. Float is now set.

Float adjustments of 1.0 (out of 10) change the header weight at the cutterbar by approximately 91 kg (200 lb.). Adjust float in increments of 0.05 to optimize field performance.

7. Use soft key 3 (D) to remove/resume float and deck position to previous setting for the attached header.



Figure 3.120: HPT Left and Right Float Settings

## Removing and Restoring Float

Follow these steps to remove and restore the header float settings:

- 1. Press rotary scroll knob (A) on Harvest Performance
  Tracker (HPT) to display the QuickMenu system or press F1
  on the console.
- 2. Rotate scroll knob (A) to highlight header float icon (B) and press scroll knob to select.



Figure 3.121: HPT Run Screen

3. Press soft key 3 (A) to remove or restore the header float.

#### NOTE:

If the header float is active, the icon at soft key 3 will say REMOVE FLOAT; if header float has been removed, the icon will say RESTORE FLOAT.



Figure 3.122: HPT Display - Adjusting Float

## 3.6.11 Setting Feed Pan and Rock Drop Tine Position

The rear of the feed pan is adjustable up and down to raise or lower the feed pan and rock drop tines.

- Lowering the feed-pan helps prevent plugging in heavy crop.
- Raising the feed-pan helps to form an even windrow in light crop.



## **WARNING**

To avoid bodily injury or death from fall of raised machine, always lock-out lift cylinders before going under header for any reason.

- 1. Raise header fully, and engage safety props.
- 2. Stop engine and remove key.
- 3. Loosen nut (A) both sides, and align pointer (B) at each side of rock drop tine support with one of the slots (C) to match crop condition.

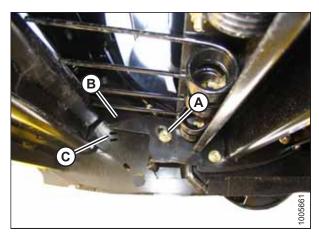



Figure 3.123: Rock Drop Tine Support

| Crop Condition | Light | Normal | Heavy |
|----------------|-------|--------|-------|
| Slot           | Upper | Center | Lower |

- Tighten hardware on both sides.
- 5. Disengage safety props.

## 3.6.12 Adjusting Conditioner Roll Gap

The roll gap determines the amount of conditioning:

- To reduce conditioning, increase roll gap.
- To increase conditioning, decrease roll gap.

The conditioner roll gap is factory-set at 6 mm (1/4 in.).



## WARNING

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

- 1. Loosen and back-off upper jam nut (A), on both sides of conditioner.
- 2. **To increase roll gap,** turn lower nut (B) clockwise to raise link, and increase the gauge (C) setting.
- 3. **To decrease roll gap,** turn lower nut (B) counterclockwise to lower link, and decrease the gauge (C) setting.
- 4. Tighten jam nuts (A), both sides.

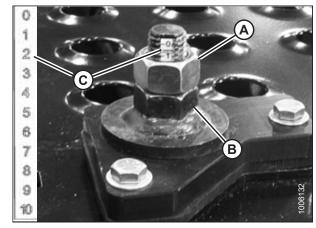



Figure 3.124: Roll Gap Adjustment Gauge

- 5. Loosen bolt (A), and rotate cover (B) to expose access port (C).
- 6. Inspect space between roll bars at both ends of the rolls at access port (C).

### **IMPORTANT:**

Roll timing and alignment are critical when the roll gap is decreased because

- Conditioning is affected
- The bars may contact each other
- 7. Check roll timing and alignment when reducing roll gap. Refer to:
  - 4.13.11 Checking/Adjusting Roll Timing, page 187
  - 4.13.10 Checking/Adjusting Roll Alignment, page 185
- 8. Close cover (B), and tighten bolt (A).

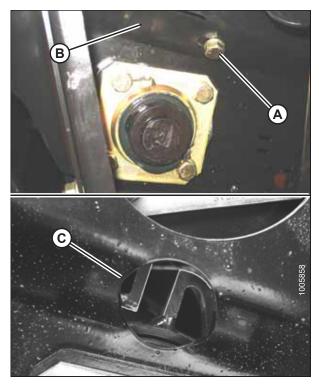



Figure 3.125: Conditioner Roll Access Port

## 3.6.13 Adjusting Conditioner Roll Tension

The roll tension (the force holding the rolls together) is factory-set, and is adjustable. There is a spring for each end of the roll.

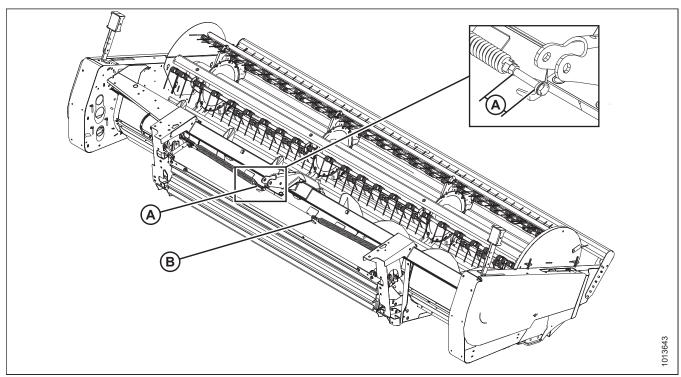



Figure 3.126: Conditioner Roll Tension Springs

### **Table 3.2 Conditioner Roll Tension Factory Settings**

| Left spring (A)  | 81–91 mm (3 3/16 – 3 9/16 in.) |
|------------------|--------------------------------|
| Right spring (B) | 41–51 mm (1 5/8 – 2 in.)       |



## **WARNING**

- Lower header fully.
- 2. Stop engine, and remove key.
- 3. **To increase the roll tension,** loosen jam nut (B) at spring insert, and turn spring drawbolt (C) clockwise to tighten the spring. Tighten jam nut (B).
- 4. **To decrease the roll tension,** loosen jam nut (B) at spring insert, and turn spring drawbolt (C) counterclockwise to loosen the spring. Tighten jam nut (B).

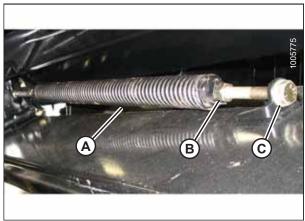



Figure 3.127: Roll Tension Spring

## 3.6.14 Positioning the Forming Shields



## WARNING

Keep hands and feet away from discharge opening. Keep everyone several hundred feet away from your operation. Never direct the discharge toward anyone. Stones or other foreign objects can be ejected with force.

The position of the forming shields controls the width and placement of the windrow. The decision on forming shield position (settings between 915–2346 mm [36–92 in.]) should be made based on the following factors:

- Weather conditions (rain, sun, humidity, wind)
- Type and yield of crop
- · Drying time available
- Method of processing (green feed, bales, silage)

A wider windrow will generally dry faster and more evenly, resulting in less protein loss. Fast drying is especially important in areas where the weather allows only a few days to cut and bale. Refer to 3.12 Haying, page 100 for more information.

Where weather conditions permit or when drying is not critical, for example, when cutting for silage or green feed, a narrower windrow may be preferred for ease of pick up.

## Positioning Side Deflectors

The position of the side forming shields controls the width and placement of the windrow.



## **WARNING**

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

To ensure windrow placement is centered with respect to carrier/drive wheels, adjust both side deflectors to the same hole position on the adjuster bar.

- 1. Set forming shield side deflectors to desired width by repositioning adjuster bars as follows:
  - a. Remove lynch pin (A).
  - b. Move adjuster bar (B) to another hole.
  - c. Reinstall lynch pin (A).

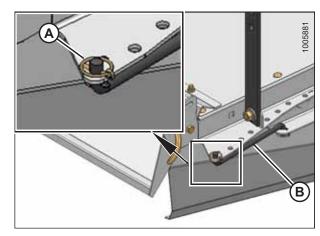



Figure 3.128: Forming Shield Side Deflector

2. If forming shield attachment is too tight or too loose, tighten or loosen nut (A) as required.

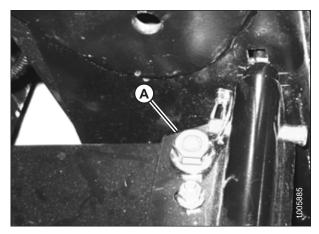



Figure 3.129: Forming Shield Adjustment Nut

## Positioning Rear Deflector (Fluffer Shield)

The rear deflector (A) slows the crop exiting the conditioner rolls, directs the flow downward, and fluffs the material.



## **WARNING**

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

- 1. Shut off engine and remove key.
- For more crop control in light material, lower the deflector
   (A) by pushing down on one side of the deflector, and then
   on the other side. Locking handles (B) are located at either
   end of deflector, and may be loosened slightly.
- 3. For heavier crops, raise the deflector (A) by pulling up on one side, and then on the other side.

### NOTE:

For even windrow formation, be sure the deflector is **NOT** twisted.

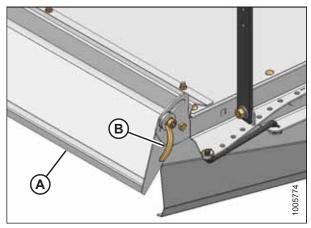



Figure 3.130: Rear Deflector

## **OPERATION**

# 3.7 Recommended Operating Settings

These settings are intended as a starting point. Operators should fine-tune to crop and field conditions. Refer to Table 3.3, page 86.

**Table 3.3 Recommended Operating Settings** 

|                    | Field Conditions                     | ions    |                               |                 |                         | Operatii            | Operating Variables |                  |                      |                      |
|--------------------|--------------------------------------|---------|-------------------------------|-----------------|-------------------------|---------------------|---------------------|------------------|----------------------|----------------------|
| Crop Type          | Crop<br>Condition<br>(tons per acre) | Terrain | Stubble<br>Height<br>mm (in.) | Header<br>Angle | Knife<br>Speed<br>(spm) | Reel Speed<br>(rpm) | Auger               | Float            | Feed Pan<br>Position | Roll Gap<br>mm (in.) |
| Alfalfa            | >3                                   | Smooth  | 0                             | Steep           | 1600–1800               | 73–77               | High                | Normal           | Lower slot           | 16 (5/8)             |
| Alfalfa            | >3                                   | Rocky   | 0                             | Shallow         | 1600–1800               | 73–77               | High                | Light            | Lower slot           | 16 (5/8)             |
| Alfalfa            | 2–3                                  | Smooth  | 0                             | Steep           | 1600–1800               | 70–75               | Normal              | Normal           | Center slot          | 13 (1/2)             |
| Alfalfa            | 2–3                                  | Rocky   | 0                             | Shallow         | 1600–1800               | 70–75               | Normal              | Light            | Center slot          | 13 (1/2)             |
| Alfalfa            | <2                                   | Smooth  | 0                             | Steep           | 1600–1800               | 65–70               | Low                 | Normal/<br>Heavy | Upper slot           | 10 (3/8)             |
| Alfalfa            | <2                                   | Rocky   | 0                             | Shallow         | 1600–1800               | 65–70               | Low                 | Light            | Upper slot           | 10 (3/8)             |
| Alfalfa            | Lodged                               | Smooth  | 0                             | Steep           | 1600–1800               | 73–77               | High                | Неаvy            | Variable             | Refer to<br>above    |
| Alfalfa            | pagpoT                               | Rocky   | 0                             | Shallow         | 1600–1800               | 73–77               | High                | Light/<br>Normal | Variable             | Refer to<br>above    |
| Timothy            | >2.5                                 | Smooth  | 64–76<br>(2.5–3)              | Steep           | 1850–1950               | 70–75               | Normal/<br>High     | Normal           | Lower slot           | 10 (3/8)             |
| Timothy            | >2.5                                 | Rocky   | 64–76<br>(2.5–3)              | Shallow         | 1850–1950               | 70–75               | Normal/<br>High     | Light            | Lower slot           | 10 (3/8)             |
| Timothy            | <2.5                                 | Smooth  | 64–76<br>(2.5–3)              | Steep           | 1850–1950               | 65–70               | Low                 | Normal           | Center slot          | 6 (1/4)              |
| Timothy            | <2.5                                 | Rocky   | 64–76<br>(2.5–3)              | Shallow         | 1850–1950               | 65–70               | Low                 | Light            | Center slot          | 6 (1/4)              |
| Timothy            | Lodged                               | Smooth  | 64–76<br>(2.5–3)              | Steep           | 1850–1950               | 70–75               | Normal/<br>High     | Неаvy            | Variable             | Refer to<br>above    |
| Timothy            | Lodged                               | Rocky   | 64–76<br>(2.5–3)              | Shallow         | 1850–1950               | 70–75               | Normal/<br>High     | Light/<br>Normal | Variable             | Refer to<br>above    |
| Sudan/Tall<br>Crop | >3                                   | Smooth  | 152<br>(6)                    | Steep           | 1700–1850               | 70–75               | High                | Normal           | Lower slot           | 19 (3/4)             |
| Sudan/Tall<br>Crop | >3                                   | Rocky   | 152 (6)                       | Shallow         | 1700–1850               | 70–75               | High                | Light            | Lower slot           | 19 (3/4)             |

Table 3.3 Recommended Operating Settings (continued)

|                     | 0.0                                  |                    |                    |                    |                    |                                 |                                 |                                 |                                 |                                 |                                 |                    | _                  |
|---------------------|--------------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------|--------------------|
|                     | Roll Gap<br>mm (in.)                 | 16 (5/8)           | 16 (5/8)           | Refer to<br>above  | Refer to<br>above  | 25 (1)                          | 25 (1)                          | 25 (1)                          | 25 (1)                          | Refer to<br>above               | Refer to<br>above               | 10 (3/8)           | 10 (3/8)           |
|                     | Feed Pan<br>Position                 | Center slot        | Center slot        | Variable           | Variable           | Lower slot                      | Lower slot                      | Center slot                     | Center slot                     | Variable                        | Variable                        | Lower slot         | Lower slot         |
| •                   | Float                                | Normal             | Light              | Неаvу              | Light/<br>Normal   | Normal                          | Light                           | Normal/<br>Heavy                | Light                           | Heavy                           | Light/<br>Normal                | Normal             | Light              |
| Operating Variables | Auger<br>Speed                       | row                | row                | Normal/<br>High    | Normal/<br>High    | High                            | High                            | Normal/<br>High                 | Normal/<br>High                 | Normal/<br>High                 | Normal/<br>High                 | High               | ЧВіН               |
| Operatir            | Reel Speed<br>(rpm)                  | 65–70              | 65–70              | 70–75              | 70–75              | 70–75                           | 70–75                           | 9-09                            | 60–65                           | 70–75                           | 70–75                           | 73–77              | 73–77              |
|                     | Knife<br>Speed<br>(spm)              | 1700–1850          | 1700–1850          | 1700–1850          | 1700–1850          | 1600–1800                       | 1600–1800                       | 1600–1800                       | 1600–1800                       | 1600–1800                       | 1600–1800                       | 1850–1950          | 1850–1950          |
|                     | Header<br>Angle                      | Steep              | Shallow            | Steep              | Shallow            | Steep                           | Shallow                         | Steep                           | Medium                          | Steep                           | Medium                          | Steep              | Shallow            |
|                     | Stubble<br>Height<br>mm (in.)        | 152<br>(6)         | 152<br>(6)         | 152<br>(6)         | 152<br>(6)         | 0                               | 0                               | 0                               | 0                               | 0                               | 0                               | 0                  | 0                  |
| tions               | Terrain                              | Smooth             | Rocky              | Smooth             | Rocky              | Smooth                          | Rocky                           | Smooth                          | Rocky                           | Smooth                          | Rocky                           | Smooth             | Rocky              |
| Field Conditions    | Crop<br>Condition<br>(tons per acre) | <3                 | £>                 | рәброт             | рәврот             | >10                             | >10                             | <10                             | <10                             | Lodged                          | Pogbol                          | >3.5               | >3.5               |
|                     | Crop Type                            | Sudan/Tall<br>Crop | Sudan/Tall<br>Crop | Sudan/Tall<br>Crop | Sudan/Tall<br>Crop | Triticale<br>(winter<br>forage) | Triticale<br>(winter<br>forage) | Triticale<br>(winter<br>forage) | Triticale<br>(winter<br>forage) | Triticale<br>(winter<br>forage) | Triticale<br>(winter<br>forage) | Wild/<br>Grass Hay | Wild/<br>Grass Hay |

Table 3.3 Recommended Operating Settings (continued)

|                    | Field Conditions                     | tions   |                               |                 |                         | Operatir            | Operating Variables |                  |                      |                      |
|--------------------|--------------------------------------|---------|-------------------------------|-----------------|-------------------------|---------------------|---------------------|------------------|----------------------|----------------------|
| Crop Type          | Crop<br>Condition<br>(tons per acre) | Terrain | Stubble<br>Height<br>mm (in.) | Header<br>Angle | Knife<br>Speed<br>(spm) | Reel Speed<br>(rpm) | Auger<br>Speed      | Float            | Feed Pan<br>Position | Roll Gap<br>mm (in.) |
| Wild/<br>Grass Hay | 2–3                                  | Smooth  | 0                             | Steep           | 1850–1950               | 70–75               | Normal              | Normal           | Center slot          | 6 (1/4)              |
| Wild/<br>Grass Hay | 2–3                                  | Rocky   | 0                             | Shallow         | 1850–1950               | 70–75               | Normal              | Light            | Center slot          | 6 (1/4)              |
| Wild/<br>Grass Hay | <2                                   | Smooth  | 0                             | Steep           | 1850–1950               | 65–70               | Low/<br>Normal      | Normal/<br>Heavy | Upper slot           | 6 (1/4)              |
| Wild/<br>Grass Hay | <2                                   | Rocky   | 0                             | Medium          | 1850–1950               | 65–70               | Low/<br>Normal      | Light/<br>Normal | Upper slot           | 6 (1/4)              |
| Wild/<br>Grass Hay | Lodged                               | Smooth  | 0                             | Steep           | 1850–1950               | 73–77               | Normal/<br>High     | Неаvу            | Variable             | Refer to<br>above    |
| Wild/<br>Grass Hay | Lodged                               | Rocky   | 0                             | Medium          | 1850–1950               | 73–77               | Normal/<br>High     | Light/<br>Normal | Variable             | Refer to<br>above    |

## 3.8 Unplugging Conditioner and Knife

M1 Series windrowers are equipped with a header drive reversing function as standard equipment. M Series windrowers (including M150, M155, M155*E*4, and M200) can be equipped with the Header Drive Reverser kit (MD #B4656). This kit is not available for M100 or M105 windrowers.

On windrowers with this equipment installed, reverse the hydraulic flow to the knife, auger, reel, and conditioner hydraulic motors to help remove any plugged material from the header.

If reverser is not installed, proceed through the following instructions.



## **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Stop forward movement of windrower, and shut down header.
- 2. Lift cutterbar about 300 mm (12 in.).
- 3. Back up about 1 m (3 ft.) while slowly engaging the header.
- 4. If plug does not clear, raise machine, apply windrower brake, shut off engine, and remove key.
- 5. Engage header lift cylinder lock-out valves.



## **WARNING**

Exercise caution when working around the cutterbar. Blades are sharp and can cause serious injury. Wear heavy gloves when working around or handling knife.

- 6. Clean off cutterbar and area under reel by hand.
- 7. Retrieve wrench (A) from storage inside the left drive compartment.

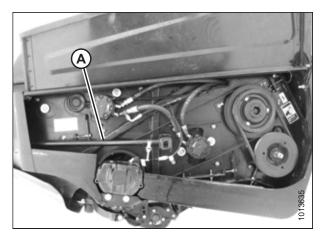



Figure 3.131: Wrench Location - A40D

## **OPERATION**

- 8. Use wrench on left end of primary driveshaft (A) to turn rolls forward until plug clears.
- 9. Return wrench to storage location, and secure in place with pin.



## WARNING

Return unplug wrench to storage location, and close left side driveshield before restarting machine.

### NOTE:

If plugging persists, refer to 7 Troubleshooting, page 199.

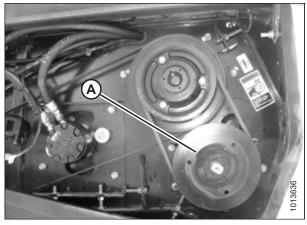



Figure 3.132: Primary Driveshaft

# 3.9 Grass Seed Special

The grass seed auger header has several features to adapt it to this special application. These features include:

- 3.9.1 Stub Guards and Hold-Downs, page 91
- 3.9.2 Special Auger Design for Grass Seed Special, page 91
- 3.9.3 Seven-Bat Reel, page 92
- 3.9.4 Auger Pan Extensions, page 92
- 3.9.5 Windrow Forming Rods, page 94

## 3.9.1 Stub Guards and Hold-Downs

The cutterbar is equipped with stub guards for effective cutting in tough grass crops. Refer to 4.7.7 Guards, page 124 for maintenance of these components.

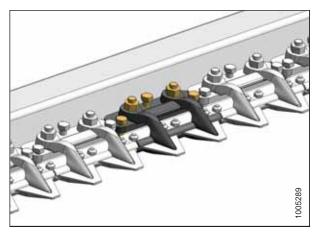



Figure 3.133: Cutterbar Stub Guards

# 3.9.2 Special Auger Design for Grass Seed Special

The center beaters and beater supports have been removed to reduce auger wrapping.

Figure 3.134: Grass Seed Auger



# 3.9.3 Seven-Bat Reel

A seventh bat is added to the reel body, for smoother reel action and better crop feed into the header.



Figure 3.135: Grass Seed Reel

# 3.9.4 Auger Pan Extensions

The grass seed header is equipped with adjustable auger pan extensions that allow adjustment of delivery opening to vary the windrow characteristics.

# Installing and Adjusting Pan Extensions

To install the pan extensions, do the following:

1. Remove deflectors (A) from their shipping positions on the header and unwrap.

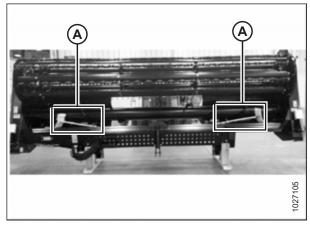



Figure 3.136: Shipping Configuration

2. Remove nut and bolt (A), nut and washers (B), and nuts (C) from the pan extension. Retain hardware.

#### NOTE:

Illustrations in this procedure show the left side pan extension. Instructions are similar for installing and adjusting the right side pan extension.

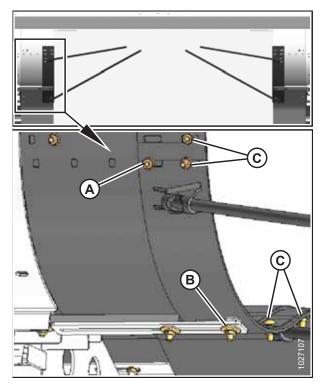



Figure 3.137: Pan Extension - Wide Setting

3. Install left side deflector (A) using nuts and bolts (B) and nut, bolt, and five washers (C) retained from the previous step. Torque all nuts to 11.5 Nm (102 lbf·in).

#### NOTE:

Do **NOT** install nut (D) if the pan extension's width will be adjusted.

#### NOTE:

Do **NOT** torque nuts if the pan extension's width will be adjusted.

4. Repeat steps for installing the pan extension on the opposite side of the header.

D B 801 201

Figure 3.138: Left Side Deflector and Hardware

To adjust a pan extension's width, do the following:

- Remove nut and bolt (A).
- 2. Loosen nut (B), but do NOT remove.
- 3. Slide pan extension (C) with swath forming rods inboard to the desired position, aligning holes on the pan extension and header.

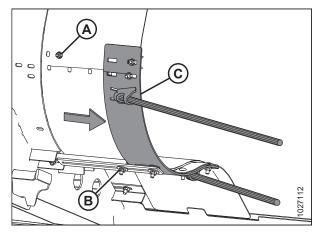
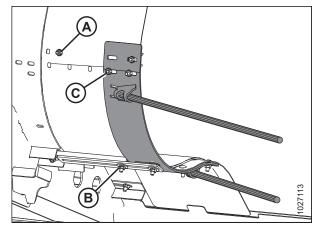
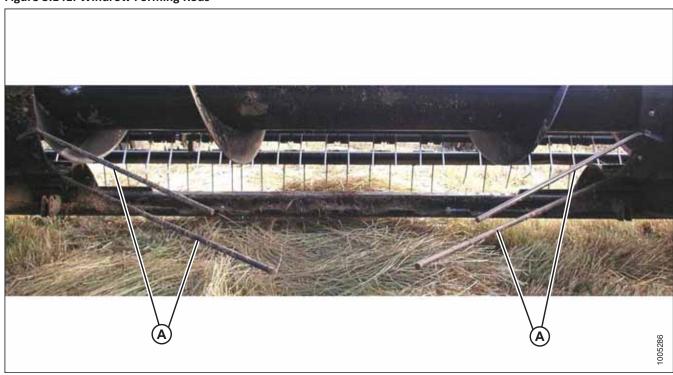



Figure 3.139: Left Side Pan Extension

- 4. Replace bolt and nut (A). Torque nut (A) and nut (B) to 11.5 Nm (102 lbf·in).
- 5. Install nut and bolt (C) and torque to 11.5 Nm (102 lbf·in).
- Repeat for adjusting the pan extension on the right side of the header.





Figure 3.140: Left Side Pan Extension

# 3.9.5 Windrow Forming Rods

Forming rods are provided to assist in forming the narrow windrows preferred for this application.

Bend rods to modify the windrow shape. Use forming rods in conjunction with auger pan extensions to achieve the width and shape of windrows you desire.

Figure 3.141: Windrow Forming Rods



#### **Selecting Ground Speed** 3.10



# **A** CAUTION

Reduce speed when turning, crossing slopes, or when travelling over rough ground.

Windrower ground speed SHOULD NOT EXCEED 13 km/h (8 mph). For most crop conditions a ground speed of 8 km/h (5 mph) has been found satisfactory.

Choose a ground speed that allows the knife to cut the crop smoothly and evenly.

The chart below indicates the relationship between ground speed and area cut for three header sizes. For example, at a ground speed of 8 km/h (5 mph) with a 4.9 m (16 ft.) header, the area cut would be approximately 4 hectares (10 acres) per hour.

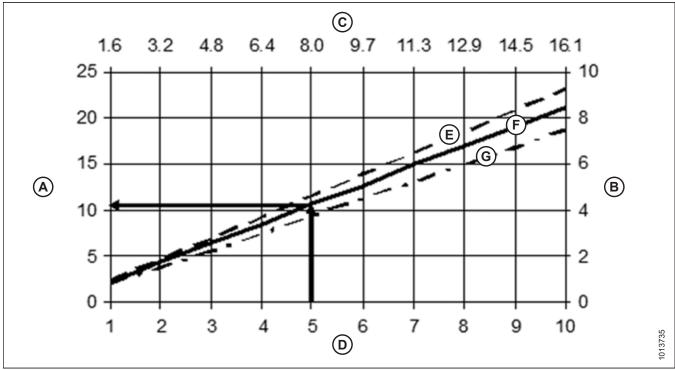



Figure 3.142: Ground Speed and Area Cut

A - Acres/Hour B - Hectares/Hour C - Kilometers/Hour D - Miles/Hour E - 5.5 m (18 ft.) F - 4.9 m (16 ft.) G - 4.3 m (14 ft.)

# 3.11 Tall Crop Dividers

The tall crop dividers attach to the ends of the header for clean crop dividing, and reel entry in tall crops. They can be easily adjusted to suit the crop, or removed when not required.

# 3.11.1 Adjusting Tall Crop Dividers

- 1. Loosen U-bolt (A).
- 2. Remove bolts (B), and reposition divider (C) to align with alternate hole location (D).
- 3. Reinstall bolts (B), and tighten.
- 4. Tighten U-bolt (A).

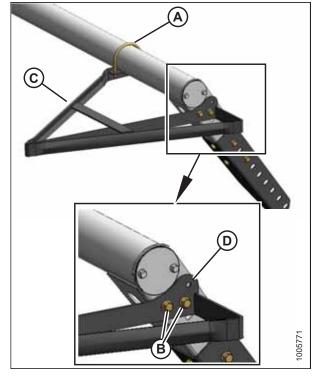



Figure 3.143: Tall Crop Divider

# 3.11.2 Removing Tall Crop Dividers

- Remove U-bolt (A) and bolts (B), and remove divider.
   Repeat for other divider.
- 2. Remove bolts attaching lean bar to header.

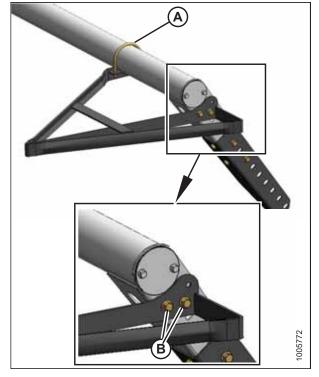



Figure 3.144: Tall Crop Divider

3. Remove bolts (A) attaching extensions (B) to lean bar (C), and remove extensions.

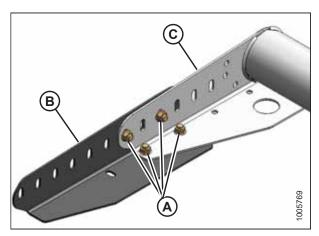



Figure 3.145: Lean Bar

## **OPERATION**

4. Reposition lean bar on header at desired height, and install existing carriage bolts (A)—two per side. Tighten bolts.

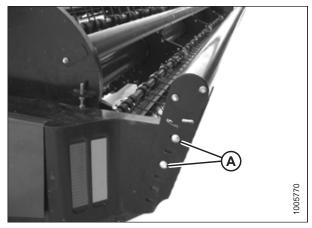



Figure 3.146: Lean Bar

# 3.12 Haying

# 3.12.1 Haying Tips

### Curing

Curing crops quickly helps maintain the highest quality of crop material as 5% of protein is lost from hay for each day that it lays on the ground after cutting.

Leaving the windrow as wide and fluffy as possible results in the quickest curing. Cured hay should be baled as soon as possible.

### Topsoil Moisture

#### **Table 3.4 Topsoil Moisture Levels**

| Level | % Moisture | Condition        |
|-------|------------|------------------|
| Wet   | Over 45%   | Soil is muddy    |
| Damp  | 25–45%     | Shows footprints |
| Dry   | Under 25%  | Surface is dusty |

- On wet soil, the general rule of wide and thin does not apply. A narrower windrow will dry faster than hay left flat on wet ground.
- When the ground is wetter than the hay, moisture from the soil is absorbed by the hay above it. Determine topsoil moisture level before cutting. Use a moisture tester or estimate level.
- If ground is wet due to irrigation, wait until soil moisture drops below 45%.
- If ground is wet due to frequent rains, cut hay when weather allows and let the forage lie on wet ground until it dries to the moisture level of the ground.
- Cut hay will dry only to the moisture level of the ground beneath it, so consider moving the windrow to drier ground.

### Weather and Topography

- Cut as much hay as possible by midday when drying conditions are best.
- Slopes that face the sun receive up to 100% more exposure to the sun's heat than slopes that do not face the sun. If hay is baled and chopped, consider baling sun-facing slopes and chopping slopes that do not.
- When relative humidity is high, the evaporation rate is low and hay dries slowly.
- Humid air is trapped around the windrow in calm conditions. Raking or tedding will expose the hay to fresher and drier air.
- Cut hay perpendicular to the direction of the prevailing winds if possible.

#### Windrow Characteristics

Producing windrows with the recommended characteristics will achieve the best results. Refer to 3.6 Operating Variables, page 66 for instructions on adjusting the header.

**Table 3.5 Recommended Windrow Characteristics** 

| Characteristic                      | Advantage                                                                                           |  |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| High and fluffy                     | Enables airflow through windrow, which is more important to the curing process than direct sunlight |  |  |  |  |  |
| Consistent formation (not bunching) | Permits an even flow of material into the baler, chopper, etc.                                      |  |  |  |  |  |

#### **OPERATION**

Table 3.5 Recommended Windrow Characteristics (continued)

| Characteristic                               | Advantage                                                                       |
|----------------------------------------------|---------------------------------------------------------------------------------|
| Even distribution of material across windrow | Results in even and consistent bales to minimize handling and stacking problems |
| Properly conditioned                         | Prevents excessive leaf damage                                                  |

### **Driving on Windrow**

Driving on previously cut windrows that will not be raked can lengthen drying time by a full day. If practical, set forming shields to produce a narrower windrow that the machine can straddle.

#### NOTE:

Driving on the windrow in high-yield crops may be unavoidable if a full width windrow is necessary.

## Raking and Tedding

Raking or tedding speeds up drying; however, the resulting leaf loss may outweigh the benefits. There is little or no advantage to raking or tedding if the ground beneath the windrow is dry.

Large windrows on damp or wet ground should be turned over when moisture levels reach 40–50%. Hay should not be raked or tedded at moisture levels below 25% or excessive yield loss will result.

## Using Chemical Drying Agents

Hay drying agents work by removing wax from legume surfaces and allowing moisture to escape cut crop and evaporate faster; however, treated hay lying on wet ground will absorb ground moisture faster.

Before deciding to use a drying agent, carefully compare the relative costs and benefits for your area.

#### **Maintenance and Servicing** Chapter 4:

The following instructions are provided to assist you in the use of the header. Detailed maintenance and service information is contained in the technical service manual that is available from your Dealer. A parts catalog is provided with your shipment.

# **Preparing for Servicing**



# **CAUTION**

To avoid personal injury, before servicing header or opening drive covers:

- Fully lower the header. If necessary to service in the raised position, always engage safety props.
- Place all controls in NEUTRAL or PARK.
- Stop engine and remove key.
- Wait for all moving parts to stop.

# 4.2 Opening/Closing Driveshield

This procedure is for opening and closing the driveshield over the conditioner drivelines.



# WARNING

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

### Opening driveshield

- 1. Shut down the engine, and remove the key from the ignition.
- 2. For headers sold in North America: Disengage rubber latch (A) and open driveshield (B).

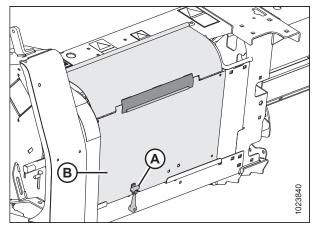



Figure 4.1: Driveshield – Headers Sold in North America

3. For headers sold outside North America: Insert a tool into hole (A) and pry to release latch (B). Disengage rubber latch (C) and open driveshield (D).

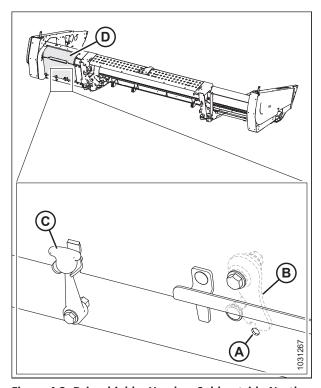



Figure 4.2: Driveshield – Headers Sold outside North America

Driveshield shown in the open position.

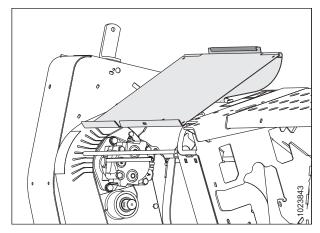



Figure 4.3: Driveshield Open

# Closing driveshield

1. **For headers sold in North America:** Close driveshield (B) and engage rubber latch (A).

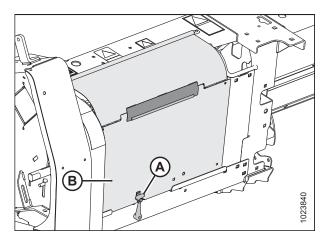



Figure 4.4: Driveshield – Headers Sold in North America

2. **For headers sold outside North America:** Close driveshield (A). Latch (B) will automatically latch. Engage rubber latch (C).

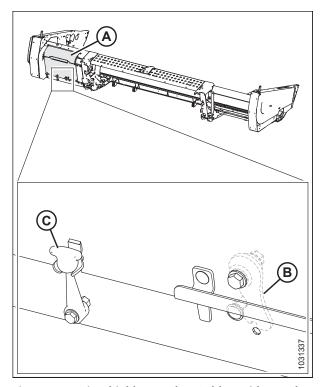
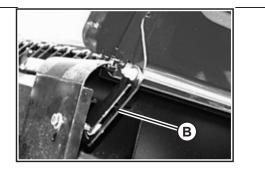



Figure 4.5: Driveshield – Headers Sold outside North America

# 4.3 Endshields

This procedure is for opening and closing the endshields at each end of the machine.


To open endshields:



# **CAUTION**

Ensure shield lock engages in the open position as shown at (B) before letting go of shield.

- 1. Insert screwdriver or equivalent into opening (A) at base of endshield and push to release latch.
- 2. Pull bottom and lift endshield until shield support (B) engages bolt. Check that support (B) is engaged before releasing hold on shield.



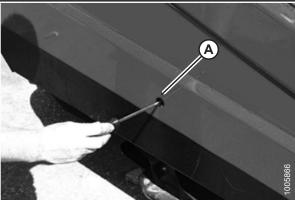



Figure 4.6: Screwdriver against Latch

### To close endshields:

- 3. Grasp endshield at top and push slightly and move support (B) inboard to disengage.
- 4. Lower endshield to about 300 mm (12 in.) from closed position.
- 5. Release endshield so that it drops to closed position and shield will self-latch.

# 4.4 Maintenance Requirements

Periodic maintenance requirements are organized according to service intervals.

Regular maintenance is the best insurance against early wear and untimely breakdowns. Following the maintenance schedule will increase your machine's life.

When servicing the machine, refer to the specific headings in this section and use only fluids and lubricants specified in chart on the inside back cover of this manual.

Log hours of operation, use the maintenance record, and keep copies of your maintenance records. Refer to 4.4.1 *Maintenance Schedule/Record, page 109*.

If a service interval specifies more than one timeframe (e.g. "100 hours or Annually"), service the machine at whichever interval is reached first.

#### **IMPORTANT:**

Recommended intervals are for average conditions. Service the machine more often if operating under adverse conditions (severe dust, extra heavy loads, etc.).



# CAUTION

Carefully follow all safety messages, refer to 1 Safety, page 1.

# 4.4.1 Maintenance Schedule/Record

|                    | Self-Propelled Windrower Header               |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
|--------------------|-----------------------------------------------|----------------------------------------------|-----------|-----------------------------------|--------|---------|---------------|--------|--------|-------|------------|---|--|--|---|--|---|
| M                  | aintenance<br>Record                          | Action:                                      | ✓ - Check |                                   |        |         | ♦ - Lubricate |        |        |       | ▲ - Change |   |  |  |   |  |   |
| Hour meter reading |                                               |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| Date               |                                               |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
|                    | Serviced by                                   |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| Break              | κ-in                                          |                                              | Refe      | r to <i>4</i> .                   | 4.2 Bi | reak-II | n Insp        | ectior | n, pag | e 110 | ).         |   |  |  |   |  |   |
| 100 H              | lours or Annual                               | ly                                           |           | T                                 |        |         |               |        |        |       |            |   |  |  | T |  |   |
| <b>✓</b>           |                                               | drive gearbox<br>lubricant level             |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ✓                  | Knife drive b                                 | ox bolt torque                               |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| <b>✓</b>           |                                               | Knife drive box<br>Lubricant level           |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| End o              | End of Season                                 |                                              |           | Refer to 4.4.4 Storage, page 111. |        |         |               |        |        |       |            |   |  |  |   |  |   |
| 10 Ho              | ours or Daily                                 |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ✓                  | Hydraulic Ho                                  | ses and Lines <sup>2</sup>                   |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ٠                  |                                               | ctions, guards,<br>d hold-downs <sup>2</sup> |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ✓                  | Knif                                          | e hold-downs <sup>2</sup>                    |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ✓                  | K                                             | nife assembly <sup>2</sup>                   |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ✓                  |                                               | x bolt torque -<br>10 hours only             |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| 25 Ho              | ours                                          |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ٠                  |                                               | Knifehead                                    |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| 50 Ho              | 50 Hours                                      |                                              |           | ı                                 |        |         |               |        |        |       |            | 1 |  |  |   |  | T |
| ٠                  | -                                             |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ٠                  | ♦ Gauge roller bearings                       |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ٠                  |                                               |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ٠                  | Tin                                           | e bar bearings                               |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ٠                  | Reel                                          | shaft bearings                               |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| <b>A</b>           | Conditioner gearbox oil - First 50 hours only |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |
| ٠                  | ♦ Conditioner universal shafts                |                                              |           |                                   |        |         |               |        |        |       |            |   |  |  |   |  |   |

<sup>2.</sup> A record of daily maintenance is not normally required, but is at the owner/operator's discretion.

|          | Self-Propelled Windrower Header              |                              |           |  |  |                      |   |   |  |  |            |  |  |  |  |  |
|----------|----------------------------------------------|------------------------------|-----------|--|--|----------------------|---|---|--|--|------------|--|--|--|--|--|
| N        | /laintenance<br>Record                       | Action:                      | ✓ - Check |  |  | <b>♦</b> - Lubricate |   |   |  |  | ▲ - Change |  |  |  |  |  |
| ٠        |                                              | Roll pivots                  |           |  |  |                      |   |   |  |  |            |  |  |  |  |  |
| ٠        | ♦ Conditioner shaft bearings                 |                              |           |  |  |                      |   |   |  |  |            |  |  |  |  |  |
| ٠        | Knife drive cross-shaft                      |                              |           |  |  |                      |   |   |  |  |            |  |  |  |  |  |
| •        | Knife drive box oil -<br>First 50 hours only |                              |           |  |  |                      |   |   |  |  |            |  |  |  |  |  |
| 1000     | 1000 Hours or 3 Years                        |                              |           |  |  |                      |   |   |  |  |            |  |  |  |  |  |
| <b>A</b> | Conditione                                   | r drive gearbox<br>lubricant |           |  |  |                      | · | · |  |  |            |  |  |  |  |  |
|          | Knife driv                                   | e box lubricant              |           |  |  |                      |   |   |  |  |            |  |  |  |  |  |

# 4.4.2 Break-In Inspection

| Hours         | Item                           | Reference |                                    |  |  |  |  |
|---------------|--------------------------------|-----------|------------------------------------|--|--|--|--|
| 5             | Hardware                       | Torque    | 8.1 Recommended Torques, page 205  |  |  |  |  |
| 5, 25, and 50 | Knife drive belt               | Tension   | 4.8.1 Header Knife Drive, page 142 |  |  |  |  |
| 10            | Knife drive box mounting bolts | Torque    | Mounting Bolts, page 134           |  |  |  |  |

Replace or tighten any missing or loose hardware. Refer to 8.1 Recommended Torques, page 205.

### 4.4.3 Preseason Checks



# **CAUTION**

- Review the operator's manual to refresh your memory on safety and operating recommendations.
- Review all safety signs and other decals on the header and note hazard areas.
- Be sure all shields and guards are properly installed and secured. Never alter or remove safety equipment.
- Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics
  of the machine.
- Check the first aid kit and fire extinguisher. Know where they are and how to use them.

Perform the following checks at the beginning of each operating season:

- 1. Adjust tension on knife drive belt. Refer to 4.7 Cutterbar, page 120.
- 2. Check oil levels and lubricate bearings. Refer to the following sections:
  - 4.5.3 Knife and Gearbox Oil, page 117
  - 4.5.2 Lubrication Points, page 112
- 3. Perform all annual maintenance. Refer to 4.4.1 Maintenance Schedule/Record, page 109.

## 4.4.4 Storage

Do the following at the end of each operating season:



# **CAUTION**

Never use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.



# **CAUTION**

Cover cutterbar and knife guards to prevent injury from accidental contact.

- 1. Clean the header thoroughly.
- 2. Store in a dry, protected place if possible. If stored outside, always cover header with a waterproof canvas or other protective material.
- 3. Raise header, and engage header lift cylinder lock-out valves.
- 4. If possible, block up the header to take weight off tires.
- 5. Repaint all worn or chipped painted surfaces to prevent rust.
- 6. Loosen drive belts.
- 7. Lubricate header thoroughly, leaving excess grease on fittings to keep moisture out of bearings. Apply grease to exposed threads, cylinder rods, and sliding surfaces of components. Oil knife components to prevent rust.
- 8. Check for worn components, and repair.
- 9. Check for broken components and order replacement from your Dealer. Attention to these items right away will save time and effort at beginning of next season.
- 10. Replace or tighten any missing or loose hardware. Refer to 8.1 Recommended Torques, page 205.
- 11. Remove divider rods (if equipped) to reduce space required for inside storage.

## 4.5 Lubrication



## **CAUTION**

To avoid personal injury, before servicing header or opening drive covers, follow procedures in 4.1 Preparing for Servicing, page 103.



## **CAUTION**

Refer to inside back cover for recommended greases.

Log hours of operation and use the Maintenance Checklist provided to keep a record of scheduled maintenance. Refer to 4.4.1 Maintenance Schedule/Record, page 109.

# 4.5.1 Greasing Procedure



# **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.

The greasing points are marked on the machine by decals showing a grease gun (A) and grease interval (B) in hours of operation.

Use the recommended lubricants specified in this manual at the inside back cover.

- 1. Wipe grease fitting with a clean cloth before greasing to avoid injecting dirt and grit.
- 2. Inject grease through fitting with grease gun until grease overflows fitting, except where noted.
- 3. Leave excess grease on fitting to keep out dirt.
- 4. Replace any loose or broken fittings immediately.
- If fitting will not take grease, remove and clean thoroughly.
   Also clean lubricant passageway. Replace fitting if necessary.

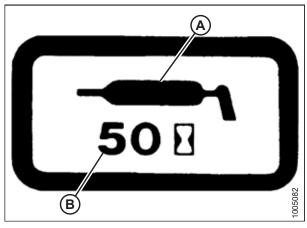
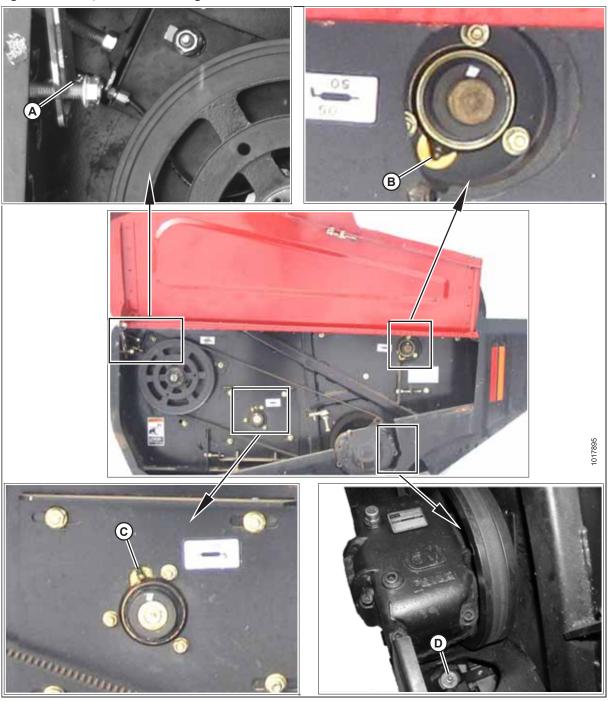



Figure 4.7: Grease Interval Decal

### 4.5.2 Lubrication Points

Lubrication requirements depend on the model of header that is being serviced. Refer to lubrication points for your specific model:


- Lubrication Points: Auger Header, page 113
- Lubrication Points Hay Conditioner, page 115
- Lubrication Points: Drivelines, page 116

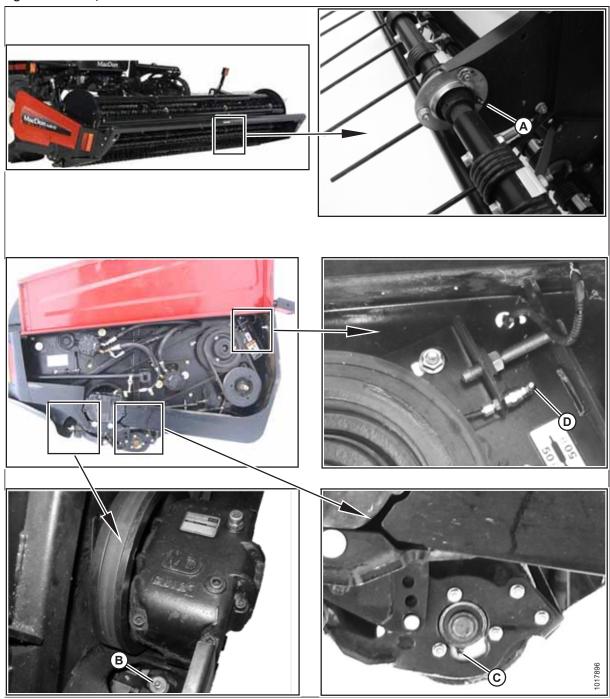
Lubrication Points: Auger Header

### NOTE:

High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 4.8: A40D, A40DX Header Right Side




- A Knife Drive Bearing (1 Place) (50 Hours)
- C Auger Shaft Bearing (1 Place) (50 Hours)

- B Reel Shaft Bearing (1 Place) (50 Hours)
- D Knifehead Bearing (1 Place) (25 Hours)

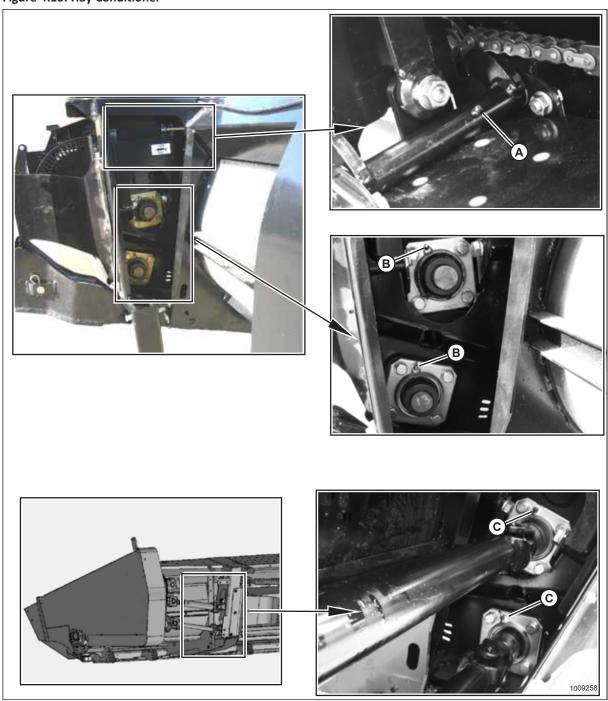
### NOTE:

High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 4.9: A40D, A40DX Header Left Side



- A Tine Bar Bearing (4 Places Each Tine Bar) (50 Hours)
- C Gauge Roller Bearings (2 Places) Both Sides if Installed (50 Hours)


- B Knifehead Bearing (1 Place) (25 Hours)
- D Knife Drive Bearing (1 Place) (50 Hours)

# Lubrication Points – Hay Conditioner

### NOTE:

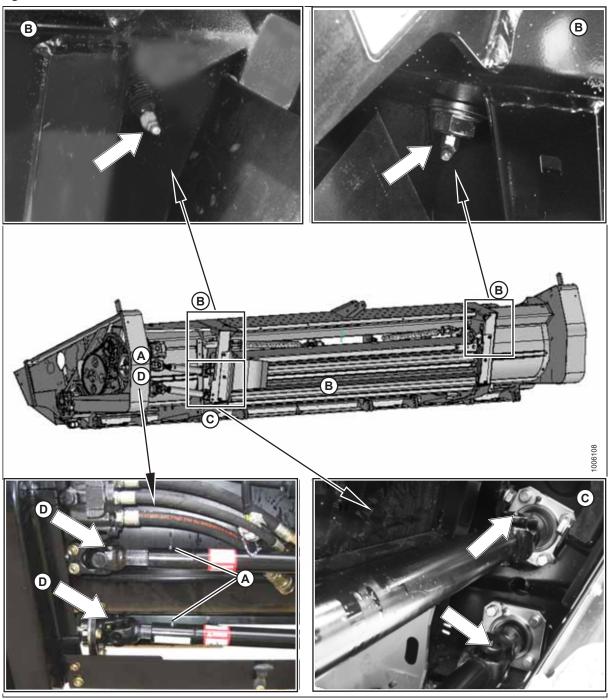
Use high temperature extreme pressure (EP2) performance with 1% max molybdenum disulphide (NLGI Grade 2) lithium base.

Figure 4.10: Hay Conditioner



A - Roll Pivot (1 Place - Both Sides)

B - Roll Shaft Bearings (2 Places)


C - Roll Shaft Bearings (2 Places)

## **Lubrication Points: Drivelines**

#### NOTE:

High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 4.11: Drivelines



A - Driveline Shafts (2 Places) (50 hours) - NOTE: 10% Moly Grease Is Recommended For Driveline Shaft Slip Joints ONLY.

B - Cross Shafts (2 Places) (50 hours) C - Driveline Universals (2 Places) (50 hours) D - Driveline Universals (2 Places) (50 hours)

# 4.5.3 Knife and Gearbox Oil

Refer to the following illustration to identify the various locations that require lubrication. Refer to the inside back cover of this manual for proper oil.



Figure 4.12: Knife and Gearbox Oil

A - Oil Knife Daily Except in Sandy Soil (SAE 30)

B - Check Roll Gearbox (1 Place)<sup>4</sup>

C - Knife Drive Box (2 Places)<sup>3</sup>

<sup>3.</sup> Check oil level with the header down on level ground.

<sup>4.</sup> Header should be on the ground.

# 4.5.4 Installing Sealed Bearings

Follow these steps to install sealed bearings:

- 1. Clean shaft and coat with rust preventative.
- 2. Install flangette (A), bearing (B), second flangette (C), and lock collar (D).

#### NOTE:

The locking cam is only on one side of the bearing.

- 3. Install (but do **NOT** tighten) flangette bolts (E).
- 4. When the shaft is correctly located, lock the lock collar with a punch.

#### NOTE:

The collar should be locked in the same direction the shaft rotates. Tighten the set screw in the collar.

- 5. Tighten the flangette bolts.
- 6. Loosen the flangette bolts on the mating bearing one turn and retighten. This will allow the bearing to line up.

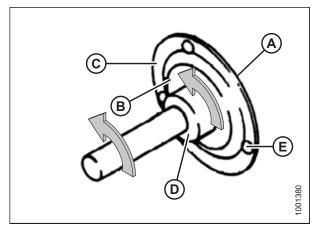



Figure 4.13: Sealed Bearing

# 4.6 Hydraulics

For hydraulics information about self-propelled windrower headers, contact your Dealer.

## 4.6.1 Servicing Header Hydraulics

Refer to your windrower operator's manual for hydraulic system maintenance procedures for self-propelled windrower headers.

# 4.6.2 Checking Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.



## WARNING

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines.
- Tighten all connections before applying pressure. Keep hands and body away from pin-holes and nozzles which eject fluids under high pressure.
- If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.
- Use a piece of cardboard or paper to search for leaks.

#### **IMPORTANT:**

Keep hydraulic coupler tips and connectors clean. Dust, dirt, water and foreign material are the major causes of hydraulic system damage. Do **NOT** attempt to service hydraulic system in the field. Precision fits require WHITE ROOM CARE during overhaul.



Figure 4.14: Hydraulic Pressure Hazard

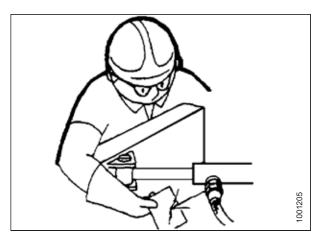



Figure 4.15: Cardboard to Search for Leaks

## 4.7 Cutterbar



### **CAUTION**

To avoid personal injury, before servicing header or opening drive covers, follow procedures in 4.1 Preparing for Servicing, page 103.



## **WARNING**

Exercise caution when working around the cutterbar. Blades are sharp and can cause serious injury. Wear heavy gloves when working around or handling knife.



### WARNING

Keep hands clear of the area between guards and knife at all times.

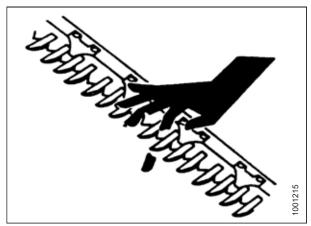



Figure 4.16: Safety around Equipment

# 4.7.1 Replacing Knife Section

Check daily that sections are firmly bolted to the knife back, and are not worn or broken. Replace as required. A worn or broken knife section can be replaced without removing the knife from the cutterbar.



## **WARNING**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under machine for any reason.



# **WARNING**

Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

- 1. Turn off engine and remove key.
- 2. Stroke knife as required to expose knife sections.
- 3. Remove lock nuts (A), and lift section (B) off of bolts.

#### **IMPORTANT:**

Do **NOT** mix heavy and light knife sections on same knife.

- Clean any dirt off of knife back, and position new knife section on bolts.
- 5. Secure with lock nuts, and tighten to required torque.

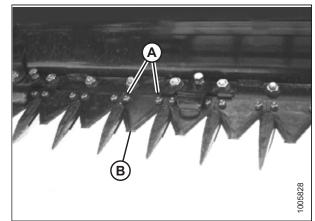



Figure 4.17: Knife Section

# 4.7.2 Removing Knife



# **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator's seat, and always engage safety props or close lock-out valves before going under the machine for any reason.



### WARNING

Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

- 1. **Mower conditioner pull-type:** Raise the pull-type fully. Shut the engine off, and remove the key from the ignition. Close the lock-out valves.
- 2. **Auger header:** Lower the header onto blocks, or raise the header fully. Shut the engine off, and remove the key from the ignition. If raising the header, engage the safety props.
- 3. Stroke the knife manually to its outer limit.
- 4. Clean the area around the knifehead.
- 5. Remove bolt (A).
- 6. Remove grease fitting (B) from the pin.
- 7. Use a screwdriver or chisel in slot (C) to release the load on the knifehead pin.
- 8. Use a screwdriver or chisel to pry the pin upwards in the pin groove until the pin is clear of the knifehead.
- 9. Push the knife assembly inboard until it is clear of the output arm.
- 10. Seal the knifehead bearing with plastic or tape unless it is being replaced.
- 11. Wrap a chain around the knifehead and pull out the knife.

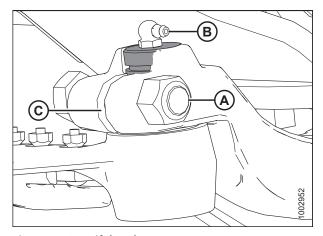



Figure 4.18: Knifehead

## 4.7.3 Installing Knife



# **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator's seat, and always engage safety props or close lock-out valves before going under the machine for any reason.



### WARNING

Stand to the rear of the knife during removal to reduce the risk of injury from cutting edges. Wear heavy gloves when handling the knife.

- 1. **Mower conditioner pull-type:** Raise the pull-type fully. Shut the engine off, and remove the key from the ignition. Close the lock-out valves.
- 2. **Auger header:** Lower the header onto blocks, or raise the header fully. Shut the engine off, and remove the key from the ignition. If raising the header, engage the safety props.
- Slide the knife into place and align the knifehead with the output arm.
- 4. For ease of removing or installing knifehead pin, remove grease fitting from pin.
- 5. Install knifehead pin (A) through the output arm and into the knifehead. Tap knifehead pin (A) down, and make sure the pin is seated at the bottom of the knifehead.
- 6. Set groove (B) in the knifehead pin 1.5 mm (1/16 in.) above output arm (C). Secure with 5/8 in. x 3 in. hex head bolt and nut (D), and torque to 217 Nm (160 lbf·ft).
- 7. Using a feeler gauge, check that the gap at location (E) is 0.25 mm (0.01 in.).

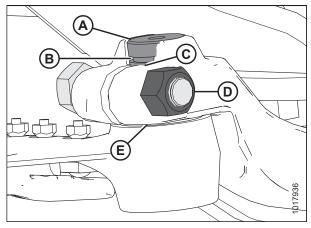



Figure 4.19: Knifehead

8. Install grease fitting (A) into the knifehead pin, and turn the grease fitting for easy access.

#### **IMPORTANT:**

Grease knifehead just enough to start a slight downward movement. Overgreasing will lead to knife misalignment which causes guards to overheat and drive systems to overload.

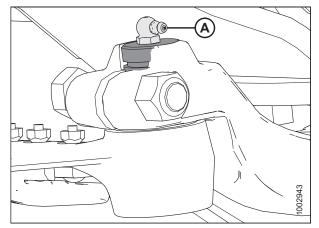



Figure 4.20: Knifehead

# 4.7.4 Removing Knifehead Bearing

- 1. Remove knife. Refer to 4.7.2 Removing Knife, page 121.
- 2. Using a flat-ended tool with approximately the same diameter as plug (D), tap out seal (B), bearing (C), plug (D), and O-ring (E) from the underside of the head.

#### NOTE:

The seal can be replaced without removing the bearing. When changing seal, check pin (A) and needle bearing for wear. Replace if necessary.

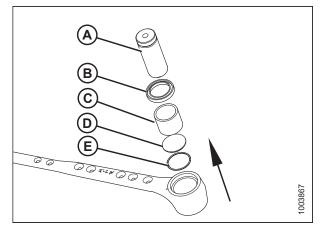



Figure 4.21: Bearing Removal

# 4.7.5 Installing Knifehead Bearing

1. Place O-ring (E) and plug (D) into knifehead.

#### **IMPORTANT:**

Install the bearing with the stamped end (the end with the identification markings) facing up.

#### NOTE:

It may be necessary to temporarily remove the grease fitting from the knifehead during installation of the knifehead pin. This will allow any trapped air to escape and knifehead pin will seat correctly.

- 2. Use a flat-ended tool with the same approximate diameter as bearing (C), and push the bearing into the knifehead until the top of the bearing is flush with the step in the knifehead.
- 3. Install seal (B) into knifehead with the lip facing outwards.

#### **IMPORTANT:**

To prevent premature knifehead or knife drive box failure, ensure there's a tight fit between knifehead pin (A) and the needle bearing, and also between the knifehead pin and the output arm.

4. Install the knife. For instructions, refer to 4.7.3 Installing Knife, page 122.

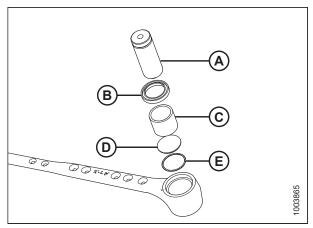



Figure 4.22: Knifehead Bearing Assembly

# 4.7.6 Removing Spare Knife from Storage

For double-knife headers, a spare knife with knifehead may be stored inside lean bar (A):

- The left knife is stored at the left end of the lean bar
- The right knife is stored at the right end of the lean bar

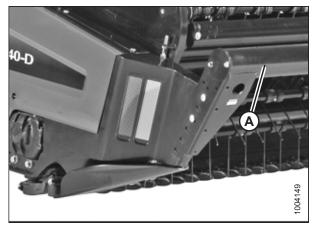



Figure 4.23: Spare Knife Location - Double Knife



## **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- Shut down the engine, and remove the key from the ignition.
- 2. Remove bolts (A) from lean bar end cap
- 3. Pull out end cap and plastic storage tube assembly with the knife inside.
- 4. Slide knife from storage tube.
- 5. Replace storage tube inside lean bar.
- 6. Reinstall bolts (A) and tighten.

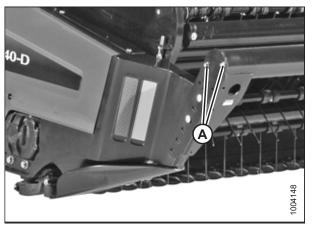
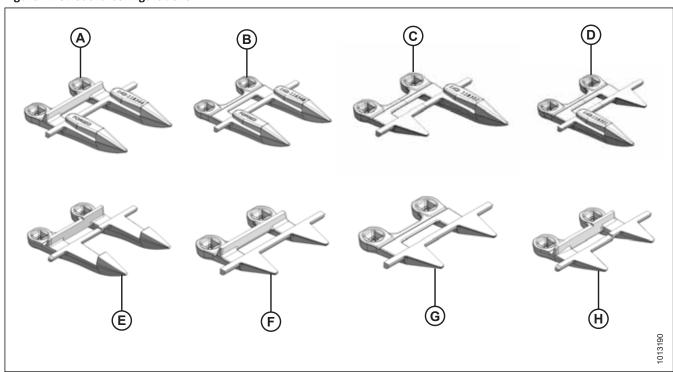



Figure 4.24: Spare Knife - Double Knife

#### **4.7.7** Guards

Guards protect the knife from damage from rocks and other objects and provide a surface for the knife to cut against, much like a pair of scissors. It is important that guards are adjusted properly.

Auger headers can be equipped with two types of guards: pointed or stub.


- Pointed guards are suitable for most standing crops and cutting conditions.
- Stub guards improve cutting performance in tough, stringy grass type crops, and crops that need to be cut close to the ground.

Guards are also designed slightly differently depending on where they are installed along the cutterbar:

- Outboard Left Located at left end of cutterbar. Does not have a ledger to allow for slight fore/aft motion from the knife drive box.
- Outboard Right Located at right end of cutterbar. Does not have a ledger to allow for slight fore/aft motion from the knife drive box (double-knife headers).
- Center Located at center of cutterbar on double-knife headers. Has a stepped ledger to allow for knife overlap.
- Drive End Located at the drive end of cutterbar, next to outboard guard. Similar to standard but does not have a ledger to allow for slight fore/aft motion from the knife drive box.

• Standard – Standard guard used at all other locations.

Figure 4.25: Guard Configurations



- A Pointed Standard (MD #118344)
- C Pointed Right Outboard (MD #118302)
- E Pointed Center (MD #124338)
- G Stub Drive End (No Ledger) (MD #118347)

- B Pointed Drive End (No Ledger) (MD #118345)
- D Pointed Left Outboard (MD #118301)
- F Stub Standard (MD #118346)
- H Stub Center (MD #124775)



# **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar.

### Aligning Guard

Check daily that guards are aligned to obtain proper shear cut between knife section and guard. Knife sections should contact shear surface of each guard.



# **WARNING**

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Retrieve tool (A) from left side of header.



Figure 4.26: Wrench Location

3. To adjust guard tips downward, position tool as shown at right, and push down.

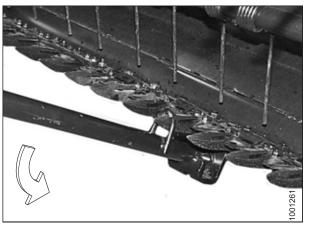



Figure 4.27: Guard Tip – Downward Adjustment

4. To adjust guard tips upward, position tool as shown at right, and pull up.

### NOTE:

If tangled or fine-stemmed material is difficult to cut, replace guards with stub guards. If crop material is tough, install stub guards with top guard and adjuster plate. A stub guard conversion kit for the header is available from your Dealer.



Figure 4.28: Guard Tip – Upward Adjustment

### Replacing Pointed Guards and Hold-Downs

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar. This procedure describes the replacement of pointed guards and hold-downs on single- and double-knife headers.



### WARNING

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

### Pointed standard guard and hold-down

Follow this procedure to replace standard pointed guards and hold-downs on single- and double-knife headers, except the double knife center guard and hold-down. Refer to double knife pointed center guard and hold-down in this section.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Stroke the knife so that knife sections are spaced midway between the guards.
- 3. Remove two nuts (A) and carriage bolts (B) that attach guard (C) and hold-down (D) to the cutterbar.
- 4. Remove guard (C) and hold-down (D).
- Position new guard (C) on cutterbar, and install carriage bolts (B).
- 6. Install hold-down (D), and secure with nuts (A). Tighten nuts to 68 Nm (50 lbf·ft).
- 7. Check and adjust clearance between hold-down and knife. Refer to 4.7.8 Hold-Downs, page 132.

Figure 4.29: Pointed Guards

### **IMPORTANT:**

The second, third, and fourth outboard guards (A) on drive side of the header do **NOT** have a ledger (B) as shown for normal guard (C). Ensure that the proper replacement is installed.

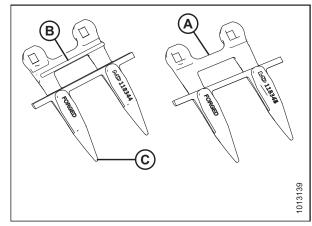



Figure 4.30: Pointed Guards

### Double knife pointed center guard and hold-down

### **IMPORTANT:**

Ensure center guard (B) has offset (A) in ledgers and that hold-down accommodates overlapping knives.

### NOTE:

Replace adjacent guards when replacing center guard.

- 1. Remove two nuts (A), and carriage bolts (B) that attach guard (C), adjuster bar (D), and hold-down (E) to the cutterbar.
- 2. Remove guard (C), hold-down (E), and adjuster bar (D).
- 3. Position new guard (C) on cutterbar, and install carriage bolts (B).
- 4. Install adjuster bar (D) and hold-down (E), and secure with nuts (A). Tighten nuts to 68–92 Nm (50–68 lbf·ft).
- 5. Check that cutting surfaces (A) of center and adjacent guards are aligned. Adjust as required as per *Aligning Guard*, page 125.
- 6. Check and adjust clearance between hold-down and knife. Refer to 4.7.8 Hold-Downs, page 132.

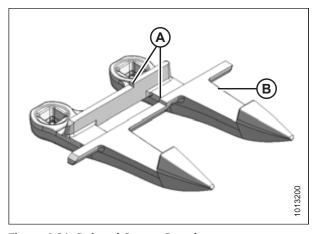



Figure 4.31: Pointed Center Guard

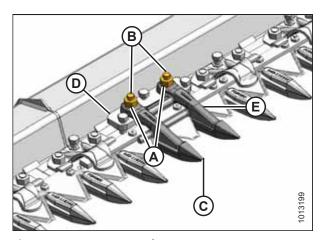



Figure 4.32: Center Guard

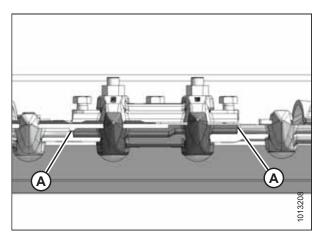



Figure 4.33: Guard Alignment

### Replacing Pointed Center Guard on Double-Knife Header

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar. This procedure applies to the center guard where the two knives overlap on a double-knife header.

### **IMPORTANT:**

Replace adjacent guards when replacing center guard.

#### **IMPORTANT:**

Ensure center guard (A) has offset (B) cutting surface.

#### **IMPORTANT:**

Ledger surfaces of center and adjacent guards must be vertically aligned to avoid interference with knife sections.

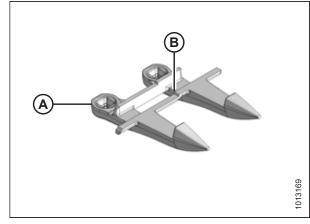



Figure 4.34: Center Guard - Double Knife

### **IMPORTANT:**

Hold-down (A) must accommodate the two overlapping knives at center guard location on double-knife header. Ensure replacement is the correct part.

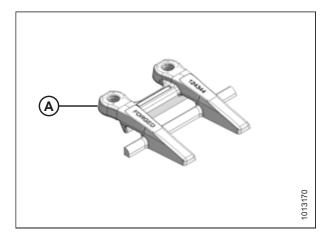



Figure 4.35: Center Hold-Down – Double Knife

- 1. Stroke the knife so that knife sections are spaced midway between the guards.
- 2. Remove two nuts (A) and bolts (B) that attach center guard (C) and hold-down (D) to cutterbar.
- 3. Remove guard (C), hold-down (D), and adjuster bar (E).
- 4. Position new guard (C) on cutterbar and install two 7/16 x 2 3/4 in. carriage bolts (B).
- 5. Position adjuster bar (E) and hold-down (D) on cutterbar and install nuts (A).
- 6. Torque nuts to 68-92 Nm (50-68 lbf·ft).

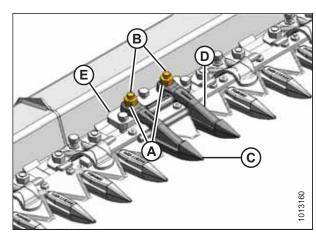



Figure 4.36: Pointed Center Guard

7. Check clearance between hold-down (D) and section. Refer to Adjusting Knife Hold-Down: Center Guard – Double-Knife Header, page 133.

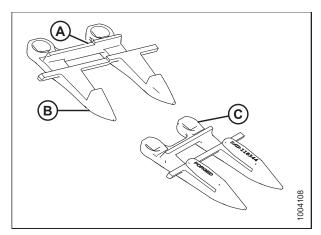



Figure 4.37: Pointed Guard Identification

A - Offsets

B - Center

C - Normal

## Replacing Center Stub Guard on Double-Knife Header

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar. This procedure applies to the center guard where the two knives overlap on a double-knife header.

### **IMPORTANT:**

Replace adjacent guards when replacing center guard.

### **IMPORTANT:**

Ensure center guard (A) has offset cutting surface (B).

### **IMPORTANT:**

Ledger surfaces of center and adjacent guards must be vertically aligned to avoid interference with knife sections.

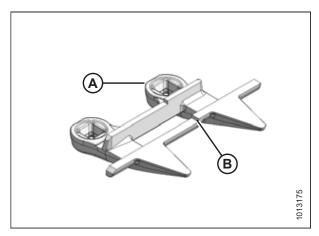



Figure 4.38: Center Guard - Double Knife

### **IMPORTANT:**

Hold-down (A) must accommodate the two overlapping knives at center guard location on double-knife header. Ensure replacement is the correct part. Hold-down is actually an inverted stub guard (MD # 118346).

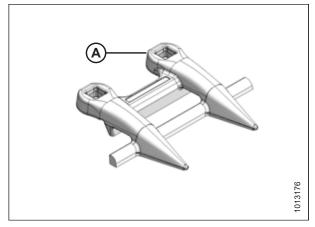



Figure 4.39: Center Hold-Down - Double Knife

- 1. Remove two nuts (A) and bolts that attach center guard (B) and top guide (C) to cutterbar.
- 2. Remove guard, top guide, and adjuster bar (D).

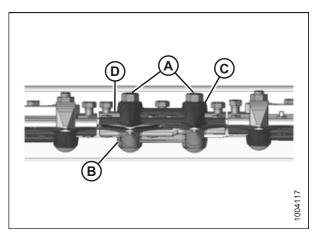



Figure 4.40: Stub Guard Replacement

# IMPORTANT:

Ensure center guard (B) has offset cutting surfaces. Refer to illustration.

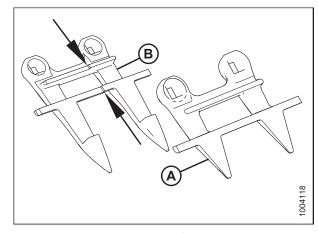



Figure 4.41: Stub Guard Identification
A - Normal B - Center

### NOTE:

Top guide (C) (which is an inverted stub guard) must accommodate the two overlapping knives at center guard location on double-knife header. Ensure replacement is correct part.

#### **IMPORTANT:**

Ledger surfaces of center and adjacent guards must be vertically aligned to avoid interference with knife sections.

3. Position replacement guard (B), adjuster bar (D), top guide (C), and install bolts and nuts (A). Do **NOT** tighten.

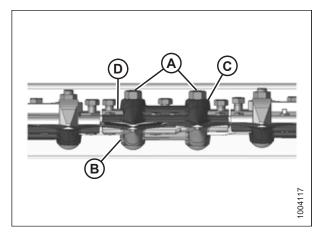
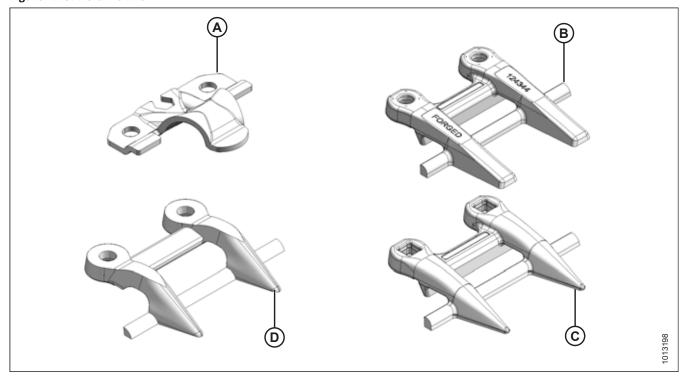



Figure 4.42: Stub Guard Adjustment

4. Check and adjust clearance between hold-down and knife. Refer to 4.7.8 Hold-Downs, page 132.


### 4.7.8 Hold-Downs

Hold-downs (also referred to as guides) keep the knife in contact with the guard cutting surface. It is important that the hold-downs are adjusted properly.

Hold-downs are designed to accommodate specific guard locations and guard types:

- Center Located at center of cutterbar on double-knife headers. Allows for knife overlap.
- Standard Used at all other locations.

Figure 4.43: Hold-Downs



- A Pointed Standard (MD #118162)
- C Stub Center Double Knife (MD #118346)

- B Pointed Center Double Knife (MD #124344)
- D Stub Standard (MD #034359)



## **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

Check daily that knife hold-downs are set to prevent knife sections from lifting off guards, but still permit the knife to slide without binding.

### Adjusting Knife Hold-Down: Center Guard – Double-Knife Header

- 1. Torque nuts (A) to 46 Nm (35 lbf·ft).
- 2. Turn adjuster bolts (B). Using feeler gauge, clearance from hold-down to knife section (C) should be:
  - 0.1–0.4 mm (0.004–0.016 in.) at the guide tip (C)
  - 0.1–1.0 mm (0.004–0.040 in.) at rear of guide (D)
- 3. Torque nuts (A) to 72 Nm (53 lbf·ft).
- After adjusting all hold-downs, run header at a low engine speed, and listen for noise due to insufficient clearance. Insufficient clearance will also result in overheating of the knife and guards.

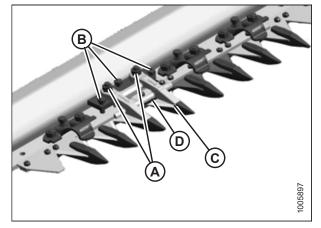



Figure 4.44: Knife Hold-Down - Double Knife

### Adjusting Knife Hold-Down: Stub Guard – Double-Knife Header

- 1. Torque nuts (A) to 46 Nm (35 lbf·ft).
- 2. Turn adjuster bolts (B). Using a feeler gauge, clearance from hold-down to knife section should be:
  - 0.1–0.4 mm (0.004–0.016 in.) at the guide tip (C)
  - 0.1–1.0 mm (0.004–0.040 in.) at rear of guide (D)
- 3. Torque nuts (A) to 72 Nm (53 lbf·ft).
- After adjusting all hold-downs, run header at a low engine speed, and listen for noise due to insufficient clearance. Insufficient clearance will also result in overheating of the knife and guards.

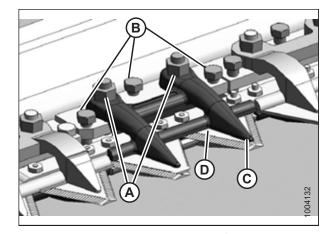



Figure 4.45: Stub Guard – Double Knife

## 4.7.9 Knife Drive Box

The knife drive box converts rotational motion from the windrower header driveshaft to reciprocating motion for the knife.

Heavy-duty oil bath knife drive box (A) uses tapered roller bearings on the input shaft and yoke for increased durability. The pulley and drive arm connections are straight splines with clamping bolts.

Check the oil level in knife drive box (A) with the dipstick that is incorporated into breather (B).

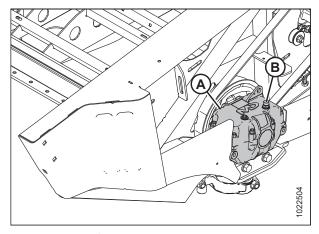



Figure 4.46: Knife Drive Box

### **Mounting Bolts**



## WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

Check torque of four knife drive box mounting bolts (A) after the first 10 hours operation, and every 100 hours thereafter. Torque bolts to 270 Nm (200 lbf·ft). When tightening, start with the side mounting bolts.

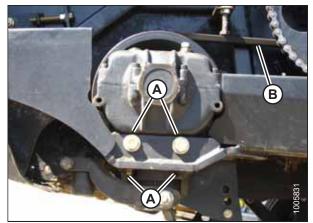



Figure 4.47: Knife Drive Box

## Removing Knife Drive Box

- 1. Loosen knife drive belt (A), and slip off knife drive box pulley. Refer to the following sections:
  - Checking and Adjusting Left Timing Belt Tension, page 143
  - Checking and Adjusting Right Timing Belt Tension, page 146

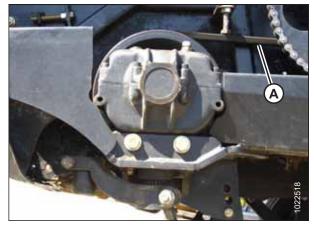



Figure 4.48: Knife Drive Box

- 2. Stroke knife to its outer limit.
- 3. Clean area around knifehead.
- 4. Remove grease fitting (A) from knifehead pin (B).
- 5. Remove nut and bolt (C).
- 6. Insert screwdriver in groove of pin (B), and pry up on pin to free knife. Pin does not have to be removed from arm.

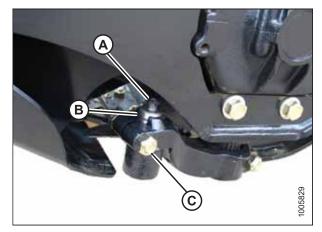



Figure 4.49: Knifehead

- 7. Remove bolt (A) from pitman arm.
- 8. Remove pitman arm (B) from knife drive box output shaft.



Figure 4.50: Pitman Arm

- 9. Remove bolts (A) attaching knife drive box to frame.
- 10. Remove knife drive box.

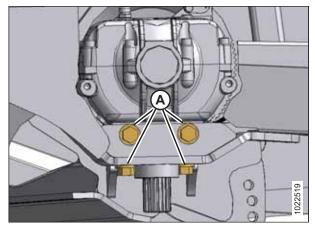



Figure 4.51: Knife Drive Box Bolts

### Installing Knife Drive Box

1. Position knife drive box as shown, and install four bolts (A). Torque side bolts, and then torque bottom bolts to 270 Nm (200 lbf·ft).

### **IMPORTANT:**

Use only Grade L9 bolts and flat washers.

2. Apply medium-strength threadlocker (Loctite® 243 or equivalent) in two bands (B) around shaft as shown, with one band at end of shaft, and one band approximately midway.

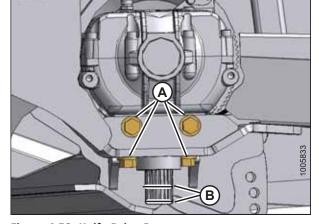



Figure 4.52: Knife Drive Box

- 3. Slide pitman arm (A) onto knife drive box output shaft.
- Rotate knife drive box pulley to ensure pitman arm just clears frame to ensure proper placement on splines.
   Remove arm (A), and reposition on splines as required.
- 5. Rotate knife drive box pulley to locate pitman arm at furthest outboard position.

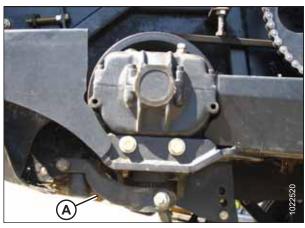



Figure 4.53: Pitman Arm

- 6. Slide pitman arm (C) up or down on shaft until it just contacts knifehead (B), (0.25 mm [0.010 in.]) gap.
- 7. Install bolt (E) and nut, and torque to 217 Nm (160 lbf·ft).
- 8. Align knifehead (B) with pitman arm (C).
- 9. Install knifehead pin (A) in pitman arm (C), and tap it down into the knifehead, ensuring pin is bottomed out in the knifehead.

#### NOTE:

It may be necessary to temporarily remove the grease fitting from the knifehead during installation of the knifehead pin. This will allow any trapped air to escape and knifehead pin will seat correctly.

- 10. Tap underside of the knifehead until the pin is flush with the upper face of the pitman arm (C).
- 11. Carefully adjust to achieve a 0.25 mm (0.010 in.) gap at (D) with the knife laying flat on the first few guards.
- 12. Replace bolt (C) and nut.
- 13. Tighten nut to 220 Nm (160 lbf·ft).
- 14. Replace knifehead pin (B).
- 15. Replace grease fitting (A) in pin.
- 16. Install drive belt onto knife drive box pulley and tighten. Refer to the following sections:
  - Checking and Adjusting Left Timing Belt Tension, page 143
  - Checking/Adjusting V-Belt Tension on Left Side, page 142
  - Checking and Adjusting Right Timing Belt Tension, page 146

### Removing Pulley

- 1. Remove knife drive box. Refer to *Removing Knife Drive Box, page 135*.
- 2. Loosen nut and bolt (A) from pulley.
- 3. Remove pulley using a three-jaw puller.

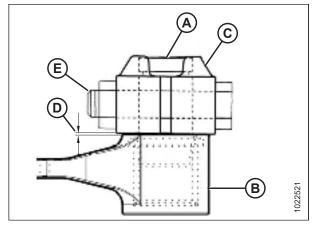



Figure 4.54: Knifehead

A - Knifehead Pin B - Knifehead D - Gap: 0.25 mm (0.010 in.) E - Bolt

C - Pitman Arm

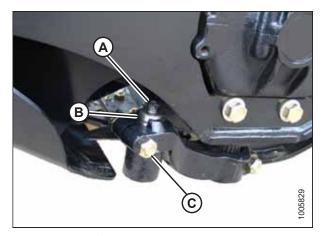



Figure 4.55: Knifehead

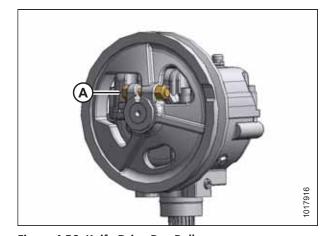



Figure 4.56: Knife Drive Box Pulley

## **Installing Pulley**

- Remove any rust or paint from inner spline. For replacement parts, remove oil/grease with degreasing agent.
- Apply medium-strength threadlocker (Loctite® 243 or equivalent) in two bands around shaft (A), with one band at end of spline, and one band approximately mid-way.

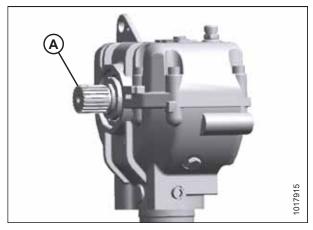



Figure 4.57: Knife Drive Box

3. Install pulley on shaft until flush with end of shaft, and secure with bolt (A) and nut. Torque bolts to 217 Nm (160 lbf·ft).

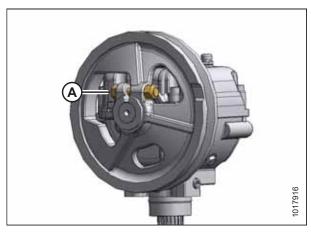



Figure 4.58: Knife Drive Box Pulley

### Changing Knife Drive Box Oil

Change knife drive box lubricant after the first 50 hours operation, and every 1000 hours (or 3 years) thereafter.

To change lubricant, follow these steps:



# **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Raise header and then place a suitable container under the knife drive box drain to collect oil.

- 2. Engage safety props.
- 3. Remove breather/dipstick (A) and drain plug (B), and allow oil to drain.
- 4. Replace drain plug and add oil to required level. Use gear lubricant, SAE 85W-140, API Service Class GL-5, 2.2 liters (2.3 quarts).
- 5. Disengage safety props.

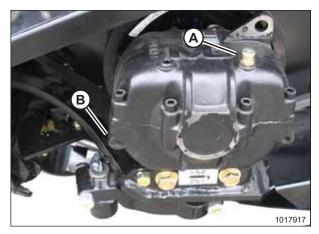



Figure 4.59: Knife Drive Box Breather

# 4.7.10 Adjusting Knife Timing

Double-knife Auger Headers require that the knives are properly timed to move in opposite directions. Knives moving in the same direction will result in unnecessary vibration.



# WARNING

- 1. Shut down the engine, and remove the key from the ignition.
- Remove right knife drive belt (A), if it is not already removed.

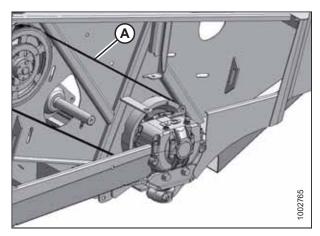
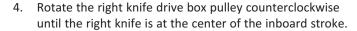




Figure 4.60: Right Knife Drive Belt

3. Rotate the left knife drive box driven pulley (A) clockwise until the left knife is at the center of the inboard stroke (moving towards center of header).

### NOTE:

Center stroke is when the knife points are centered between guard points.



### NOTE:

Secure knives to prevent movement when installing the belts.



## **CAUTION**

To maintain timing, knife drive box driver and driven pulleys must NOT rotate as the belt is tightened.

5. Install the right knife drive box drive belt and tension.

6. Check that timing belt (A) is properly seated in the grooves on both driver and driven pulley on the right, and is tensioned correctly. The belt should be tensioned to a 14 mm (9/16 in.) deflection. This is achieved by applying 22–30 N (5–6.5 lbf) to the belt at midspan.

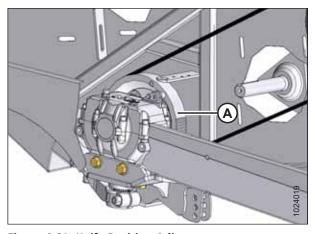



Figure 4.61: Knife Position Adjustment

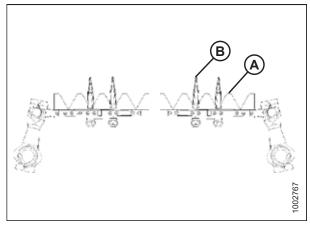



Figure 4.62: Knife Sections Centered Between Knife and Guard Points

A - Knife Point

**B** - Guard Point

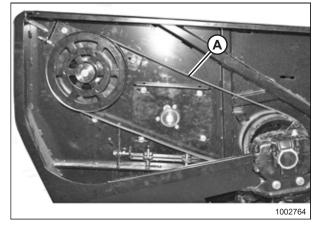



Figure 4.63: Timing Belt – Right Side

7. Check for correct knife timing by rotating driveshaft (A) slowly with unplugging wrench (B), and observe where knives overlap at the center of the header.

### **IMPORTANT:**

Knives must move in opposite directions, and must begin moving at exactly the same time.

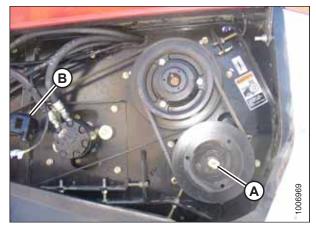



Figure 4.64: Knife Timing

- 8. If timing is correct, skip the remaining steps.
- 9. If timing is off, loosen right timing belt sufficiently to allow skipping the belt one or more teeth as required.
  - a. **If right knife LEADS left knife,** rotate right driven pulley (A) clockwise.
  - b. **If right knife LAGS left knife,** rotate right driven pulley (A) counterclockwise.
  - c. Tighten right timing belt.

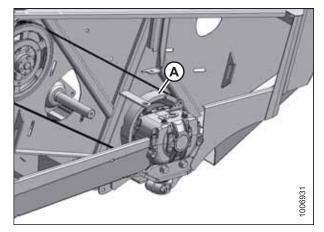



Figure 4.65: Knife Timing

# 4.8 Header Drive Systems

### 4.8.1 Header Knife Drive

The A40D and A40DX double-knife headers have a windrower-powered hydraulic motor that drives each knife on the header with two belt-driven knife drive boxes.

Checking/Adjusting V-Belt Tension on Left Side



## **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Turn off engine and remove key.
- 2. Open left endshield.
- 3. Apply a force of 35–50 N (8–12 lbf) on each belt at midspan (D). Belt should deflect 4 mm (3/16 in.). If necessary, adjust as follows:
  - a. Loosen three nuts (A), and jam nut on adjuster bolt (B).
  - b. Turn adjuster bolt (B) to move pulley (C) to achieve required deflection at (D).
  - c. Tighten jam nut at (B), and three nuts (A).
- 4. Close endshield.

### NOTE:

Readjust tension of new belts after about 5 hours of operation.

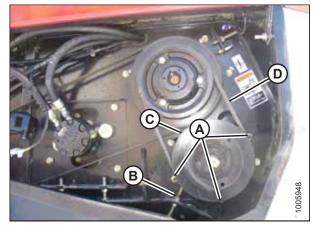



Figure 4.66: Left Side V-Belt

Removing Left V-Belts



### **WARNING**

- 1. Shut down the engine, and remove the key from the ignition.
- Open left endshield.
- 3. Loosen three nuts (A) and jam nut on adjuster bolt (B).
- 4. Turn adjuster bolt (B) so that drive belts (C) can be slipped off pulleys (D) and (E).

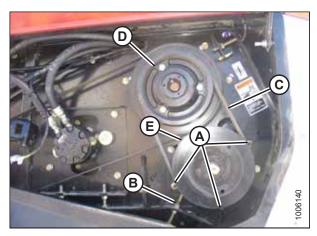



Figure 4.67: Left V-Belt

### Installing Double V-Belts



## **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

#### **IMPORTANT:**

Belts are a matched set. Even if only one belt is damaged, replace both drive belts.

#### NOTE:

When installing new belt, never pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Slip belts (A) onto pulleys (B) and (C).

### **IMPORTANT:**

To prolong belt and drive life, do **NOT** over-tighten belts.

- 3. Turn adjuster bolt (D) to move pulley (B) until a force of 35–50 N (8–12 lbf) applied at midspan to each belt deflects each belt (A) 4 mm (3/16 in.).
- 4. Tighten jam nut at location (D), and three nuts (E).
- 5. Close endshield.

#### NOTE:

Readjust tension of a new belt after a short run-in period (5 hours).

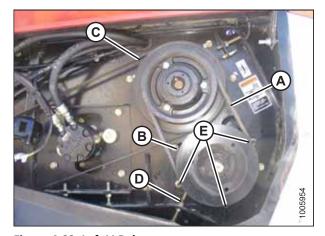



Figure 4.68: Left V-Belt

Checking and Adjusting Left Timing Belt Tension



# WARNING

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

### IMPORTANT:

To prolong belt and drive life, do **NOT** over-tighten belt.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Open left endshield.

- 3. Apply a force of 22–30 N (5–6.5 lbf) on belt (A) at midspan. Belt should deflect 14 mm (9/16 in.). If necessary, adjust as follows:
  - a. Loosen three nuts (B) and jam nut on adjuster bolt (C).
  - b. Turn adjuster bolt (C) to move pulley (D) until required tension is achieved.
  - c. Tighten jam nut at location (C) and three nuts (B).
- 4. Close endshield.

### NOTE:

Readjust tension of new belt after 5 hours of operation.

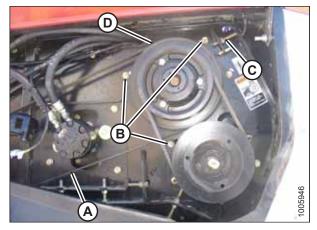



Figure 4.69: Left Timing Belt

### Removing Timing Belt from Left Side

To remove the knife drive timing belt from the left side of an auger header, follow these steps:

- 1. Turn off engine and remove key.
- 2. Open shield on header's left side.
- 3. Loosen the three bolts (A) that lock the bottom drive pulley in place.
- 4. Loosen adjusting bolt (B); this will loosen the belts.

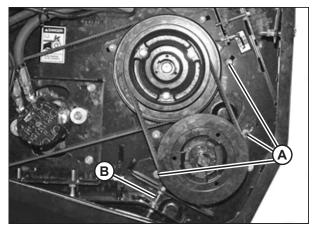



Figure 4.70: Gearbox Locking Bolts

- 5. Loosen the three bolts (A) that lock the pulley in position.
- Loosen adjusting bolt (B); this will loosen the knife drive belt.
- 7. Remove the two belts (C) that drive the cross shaft.
- 8. Remove the knife drive timing belt (D) from the rear pulley.

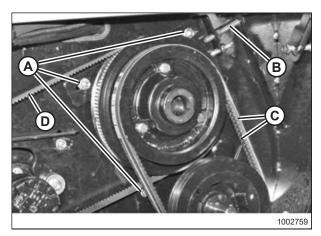



Figure 4.71: Belts Tension Bolts

9. Open the access panel (A) located beside the knife drive box. Line up the belt with the notch machined into the knife drive box pulley. Rotate the pulley with the belt in the notch until it is free for removal.

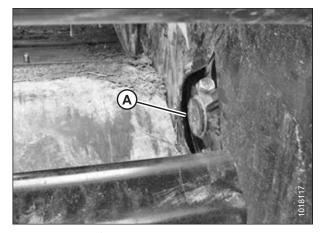



Figure 4.72: Knife Drive Belt Access Panel

### NOTE:

Mark the ports and hoses and place port caps or plastic bags with tie wraps to prevent contamination.

10. To completely remove the belt, you will need to remove the two hoses (A) off of the auger drive motor, and disconnect the knife speed harness (B).

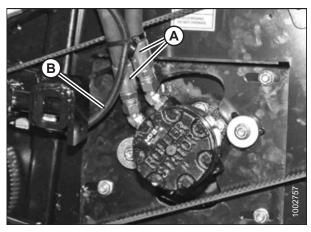



Figure 4.73: Auger Hoses

Installing Left Timing Belt



## WARNING

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Route knife drive timing belt from inboard side of endsheet through opening (A).

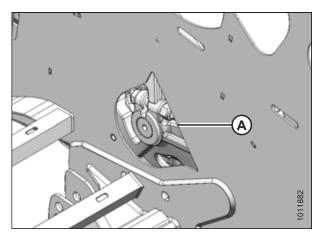



Figure 4.74: Left Inboard Opening

- 3. Position knife drive belt (A) onto knife drive box pulley (B).
- 4. Route knife drive belt (A) onto knife drive pulley (C).
- 5. Turn adjuster bolt (D) to move pulley (C) until a force of 22–30 N (5–6.5 lbf) deflects belt 14 mm (9/16 in.) at knife drive belt midspan (A).

### **IMPORTANT:**

To prolong belt and drive life, do NOT over-tighten belts.

### NOTE:

When installing new belt, never pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

- 6. Tighten adjuster bolt jam nut (A) and three nuts (B) on the knife drive pulley.
- 7. Reconnect hoses onto hydraulic motor (C).
- 8. Install knife drive V-belts. For instructions, refer to *Installing Double V-Belts*, page 143.

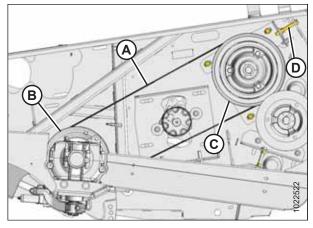



Figure 4.75: Left Timing Belt

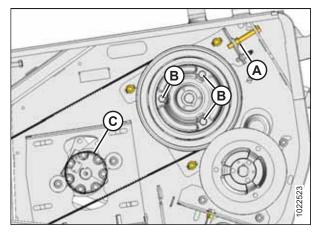



Figure 4.76: Left Timing Belt

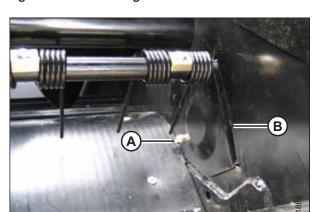



Figure 4.77: Left Inboard Cover

9. Install cover (B) in endsheet and secure with bolt (A).

10. Close endshield.

### NOTE:

Readjust tension of a new belt after a short run-in period (5 hours).

Checking and Adjusting Right Timing Belt Tension



### **WARNING**

### **IMPORTANT:**

To prolong belt and drive life, do **NOT** over-tighten belt.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Open right endshield.
- 3. Apply a force of 22–30 N (5–6.5 lbf) on belt (D) at midspan. Belt should deflect 14 mm (9/16 in.). If necessary, adjust as follows:
  - a. Loosen three nuts (A) and jam nut on adjuster bolt (B).
  - Turn adjuster bolt (B) to move pulley (C) until required tension is achieved.
  - c. Tighten jam nut at location (B) and three nuts (A).
- 4. Close endshield.

### NOTE:

Readjust tension of new belt after 5 hours of operation.

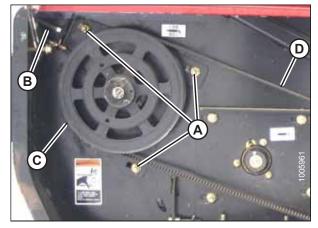



Figure 4.78: Right Timing Belt

### Removing Right Timing Belt



# WARNING

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Remove bolt (A) and remove cover (B) in right endsheet.

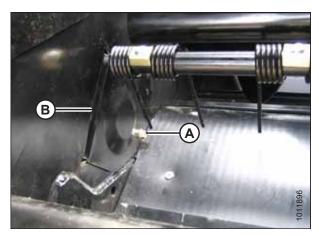



Figure 4.79: Right Inboard Cover

- 3. Open right endshield.
- 4. Loosen three nuts (A), and jam nut on adjuster bolt (B).
- 5. Turn adjuster bolt (B) so that knife drive belt (C) can be slipped off pulley (D).
- Remove belt (C) from pulley (E) and remove belt through hole in endsheet.

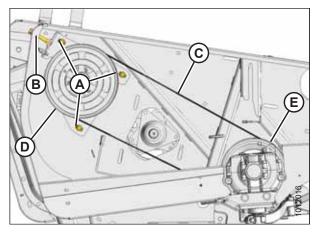



Figure 4.80: Right Timing Belt

### Installing Right Timing Belt



# **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Route knife drive timing belt from inboard side of endsheet through opening (A).

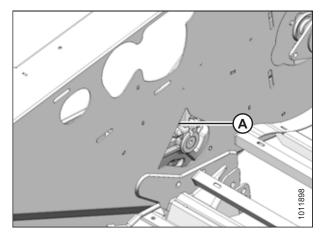



Figure 4.81: Right Inboard Opening

3. Position belt (C) onto knife drive box pulley (E) and knife drive pulley (D) as shown. Do **NOT** over-tighten belts.

### **IMPORTANT:**

To prolong belt and drive life, do **NOT** over-tighten belts.

### NOTE:

When installing new belt, **NEVER** pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

- 4. Turn adjuster bolt (B) to move pulley (C) until a force of 22–30 N (5–6.5 lbf) deflects belt (C) 14 mm (9/16 in.) at midspan.
- 5. Tighten jam nut at location (B) and three nuts (A).

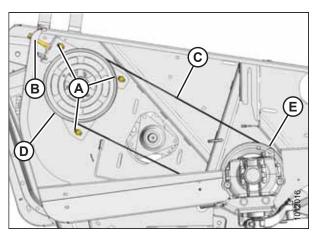



Figure 4.82: Right Timing Belt

- 6. Install cover (B) in endsheet at knife drive box and secure with bolt (A).
- 7. Close endshield.

### NOTE:

Readjust tension of a new belt after a short run-in period (5 hours).

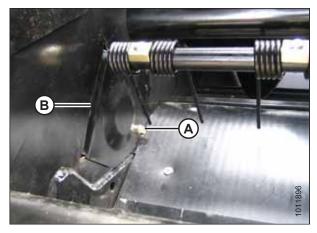



Figure 4.83: Right Inboard Cover

# 4.8.2 Header Reel Drive

The reel drive gearbox is a sealed, factory-assembled unit on an A40D and A40DX header. The reel drive gearbox requires no scheduled maintenance, but if service is required, see your Dealer.

# 4.8.3 Header Auger Drive

The auger on an A40D and A40DX Header is driven directly from a hydraulic motor that is powered by the windrower hydraulics.

# 4.9 Reel Tines and Tine Bar Bearings

Separate procedures are required to replace reel tines, depending on their location on the reel. Refer to the following topics for these procedures:

- 4.9.1 Replacing Tine and Bearing: Cam End Disc #1, page 150
- 4.9.2 Replacing Tine and Bearing: Disc #2, page 154
- 4.9.3 Replacing Tine and Bearing: Center Section X, page 158
- 4.9.4 Replacing Tine and Bearing: Opposite Cam Section Y, page 160
- 4.9.5 Replacing Tine: Tine Bar Extension Section Z, page 162

### **IMPORTANT:**

Keep reel tines in good condition. Straighten or replace as required.

# 4.9.1 Replacing Tine and Bearing: Cam End – Disc #1

### NOTE:

Apply a light coating of anti-seize compound to tine tube connections and all bolts prior to reassembly.

Replace tines and bearing at disc #1 (A) as follows:

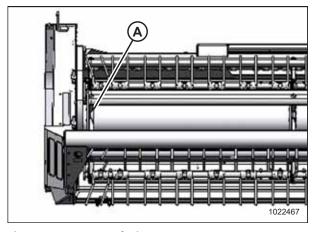



Figure 4.84: Cam End Disc

1. Loosen bolt on cover (A), and slide cover to expose hole in cam disc. Rotate reel, and align bearing with hole.

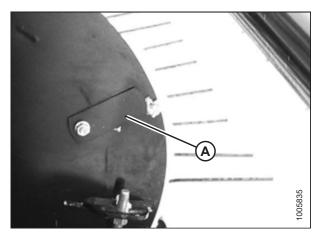



Figure 4.85: Cam Disc

- 2. Remove cam follower bearing bolt (A), bearing (B), and nut.
- 3. Disengage cam arm (C) from the cam track with a pry bar.
- 4. Remove flangette mounting bolts (D).

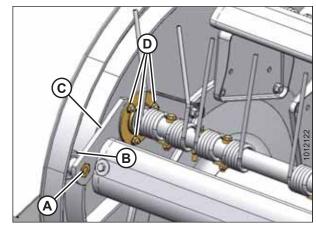



Figure 4.86: Cam Follower

5. Remove nuts (A), keepers (B), and shoulder bolts (C) that connect cam arm (D) and end tines (E) to tine bar.

### **IMPORTANT:**

Tine attachment hardware and configuration may vary between Tine Bar Type A and Tine Bar Type B. Identify locations so that tine hardware will be reinstalled at same locations. Both Tine Bar Type A and Tine Bar Type B configurations are required to stagger tines on the reel bat and ensure all crop is picked up.

6. Position end of tine bar clear of cam disc, and remove cam arm assembly (D), complete with bearing assembly.

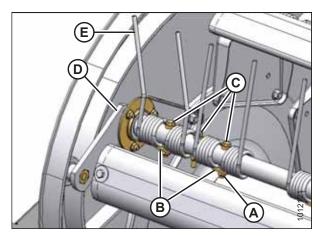



Figure 4.87: Tine Bar Type B

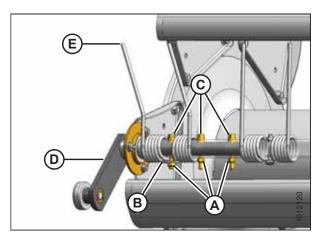



Figure 4.88: Tine Bar Type A

A - Nuts

- B Keepers
- C Shoulder Bolts
- D Cam Arm Assembly
- E End Tines

7. Replace bearing (A). Refer to 4.5.4 Installing Sealed Bearings, page 118.

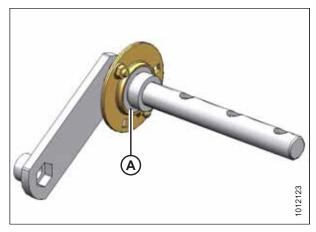



Figure 4.89: Cam Arm Assembly

- 8. Replace tines as follows:
  - a. Remove bolt (A) and keeper (B) on tine to be replaced.
  - b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
  - c. Slide tines off tine bar.
  - d. Install replacement tine on tine bar and secure with bolt (A) and keeper (B). Install nut with flat side against tine bar.
  - e. Slide remaining tines onto tine bar and attach to tine bar. Do **NOT** install bolts in end tines at this time.
- 9. Install cam arm assembly (A), complete with bearing onto tine bar.
- 10. Engage cam arm (A) into cam track as shown.
- 11. Attach bearing flangettes with bolts (B). Tighten bolts to 31–36 Nm (23–26 lbf·ft).
- 12. Lock the bearing.

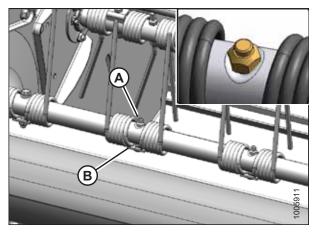



Figure 4.90: Tine Installation

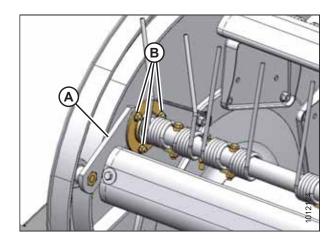



Figure 4.91: Cam End Tine Bar

### **IMPORTANT:**

Replace hardware at cam end of tine bar with hardware as specified in the following steps.

- 13. Position tines as shown and install bolts (A) with keepers, spacers (B), and nuts (C).
- 14. Install bolts (D), spacers (B), and nuts (C) between tines as shown.
- 15. Alternate hardware configuration to include both Type A Tine Bar and Type B Tine Bar configurations:
  - a. 5/16 x 2 1/2 in. carriage bolt (A)
  - b. Spacer (B)
  - c. Lock nut (C)
  - d. 5/16 x 2 in. hex head bolt (D)

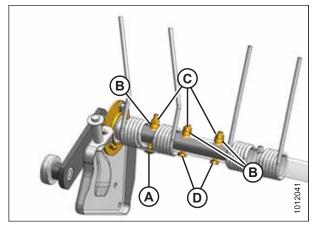



Figure 4.92: Type A Tine Bar

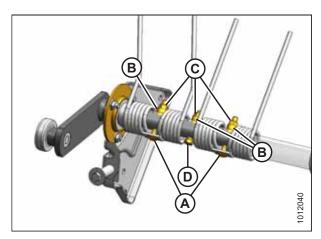



Figure 4.93: Type B Tine Bar

A - Carriage Bolts

B - Spacers

C - Lock Nuts

D - Hex Head Bolt

16. Install cam follower bearing (A) with bolt (B). Apply medium-strength threadlocker (Loctite® 262 or equivalent) to bolt threads, and torque to 122 Nm (90 lbf·ft).

### **IMPORTANT:**

Install nut with distorted thread TOWARDS bolt head.

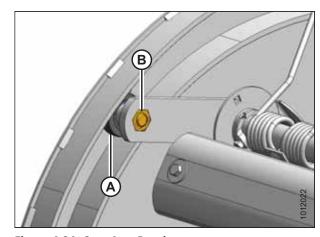



Figure 4.94: Cam Arm Bearing

17. Reposition cover (A) on cam, and tighten bolt.

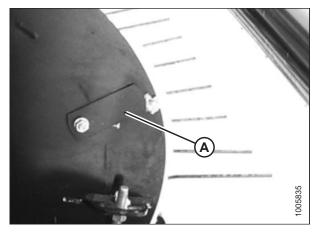



Figure 4.95: Cover

# 4.9.2 Replacing Tine and Bearing: Disc #2

Replace tine and bearing at disc #2 (A) as follows:

### **IMPORTANT:**

Tine attachment hardware and configuration may vary between Tine Bar Type A and Tine Bar Type B. Identify locations so that tine hardware will be reinstalled at same locations. Both Tine Bar Type A and Tine Bar Type B configurations are required to stagger tines on the reel bat and ensure all crop is picked up.

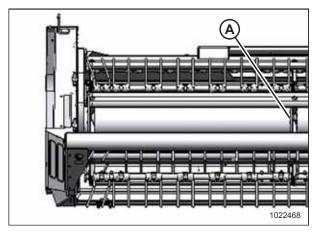



Figure 4.96: Cam End Disc

### Type A tine bars

- 1. Remove flangette mounting bolts (A) at reel disc #2.
- 2. Remove shoulder bolts (B) and keeper (C) from tine bar.
- 3. Separate left tine bar (D) with bearing from center tine bar (E).
- 4. Remove tine from center tine bar (E).

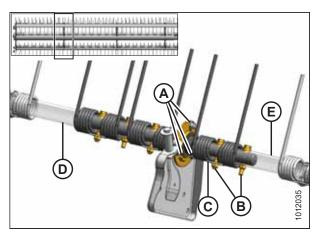



Figure 4.97: Tine Bar Type A

- 5. Remove bearing (A) from tine bar connecting shaft (B). Refer to 4.5.4 Installing Sealed Bearings, page 118.
- 6. Remove nuts (C), shoulder bolts (D), keepers (E) from left tine bar (F) and remove tines (G).

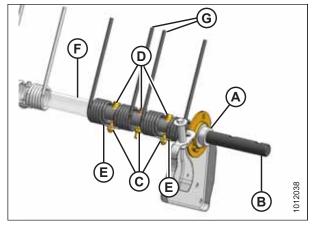



Figure 4.98: Tine Bar Type A

- 7. Replace tines as follows:
  - a. Remove bolt (A) and keeper (B) on tine to be replaced.
  - b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
  - c. Slide tines off tine bar.
  - d. Install replacement tine on tine bar and secure with bolt (A) and keeper (B). Install nut with flat side against tine bar.
  - e. Slide remaining tines onto tine bar and attach to tine bar. Do **NOT** install bolts in end tines at this time.
- B B 11005901

Figure 4.99: Tine Installation

- 8. Install end tines (G) onto left tine bar (F) with shoulder bolts (D), keepers (E), and nuts (C).
- 9. Assemble new bearing (A) with flangettes onto connecting shaft (B). Refer to 4.5.4 Installing Sealed Bearings, page 118.

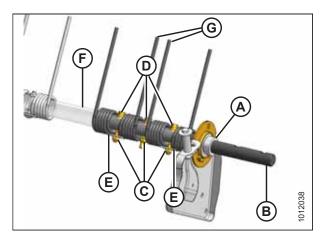



Figure 4.100: Tine Bar Type A

- 10. Slip new tine onto center tine bar (E).
- 11. Assemble left tine bar (D) to center tine bar (E) and secure with shoulder bolts (B), keeper (C), and nuts.
- 12. Install tine bar onto reel disc with hardware (A). Tighten bolts to 31–36 Nm (23–26 lbf·ft).

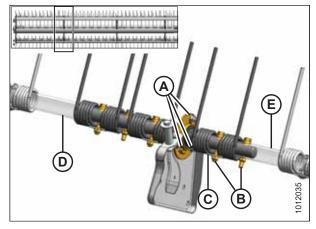



Figure 4.101: Tine Bar Type A

### Type B tine bars

- 13. Remove flangette mounting bolts (A) at reel disc #2.
- 14. Remove shoulder bolts (B) and keeper (C) from tine bar.
- 15. Separate left tine bar (D) with bearing from center tine bar (E).
- 16. Remove tine from center tine bar (E).

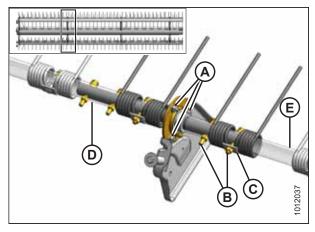



Figure 4.102: Tine Bar Type B

- 17. Remove bearing (A) from tine bar connecting shaft (B). Refer to 4.5.4 Installing Sealed Bearings, page 118.
- 18. Remove nut (C), shoulder bolt (D), and keeper (E) from left tine bar (F) and remove tine (G).

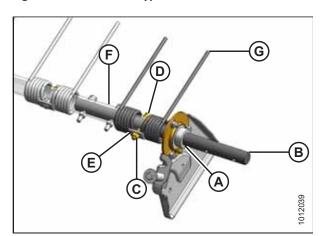



Figure 4.103: Tine Bar Type B

- 19. Install new tine (G) onto left tine bar (F) with shoulder bolt (D), keeper (E), and nut (C).
- 20. Assemble new bearing (A) with flangettes onto connecting shaft (B). Refer to 4.5.4 Installing Sealed Bearings, page 118.

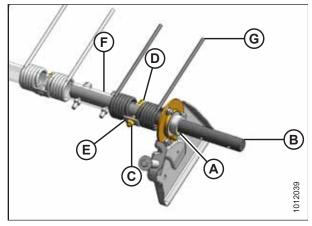



Figure 4.104: Tine Bar Type B

### 21. Replace tines as follows:

- a. Remove bolt (A) and keeper (B) on tine to be replaced.
- b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
- c. Slide tines off tine bar.
- d. Install replacement tine on tine bar and secure with bolt (A) and keeper (B). Install nut with flat side against tine bar.
- e. Slide remaining tines onto tine bar and attach to tine bar. Do **NOT** install bolts in end tines at this time.

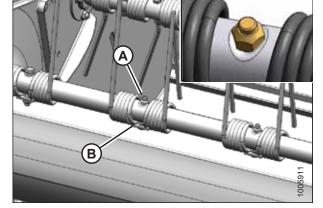



Figure 4.105: Tine Installation

- 22. Slip new tine onto center tine bar (E).
- 23. Assemble left tine bar (D) to center tine bar (E) and secure with shoulder bolt (B) and nut.
- 24. Secure tine onto center tine bar (E) with shoulder bolt (B), keeper (C), and nut.
- 25. Install tine bar onto reel disc with hardware (A). Tighten bolts to 31–36 Nm (23–26 lbf·ft).

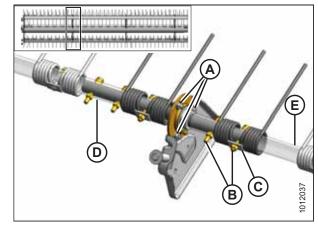



Figure 4.106: Tine Bar Type B

# 4.9.3 Replacing Tine and Bearing: Center Section X

Replace tine and bearings at center section **X** (X) as follows:

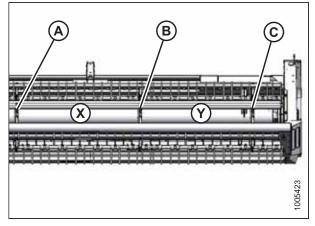



Figure 4.107: Center Section X

A - Disc #2 B - Disc #3 C - Disc #4 X - Section X

Y - Section Y

 Remove flangette mounting bolts (A) at reel discs #3 and #4.




Figure 4.108: Disc #4

- 2. Remove shoulder bolts (B) and keeper (C) connecting tine bar sections **X** and **Y** at reel disc #3.
- 3. Lift tine bar away from reel arms, and remove complete tine bar section **Y** (including reel bearings at discs #3 and #4).
- 4. To replace tine bar bearing, refer to 4.5.4 Installing Sealed Bearings, page 118.

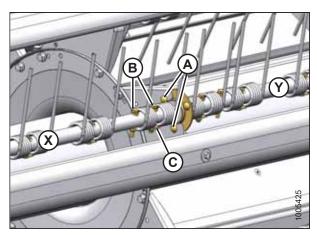



Figure 4.109: Disc #3

- A Flangette Mounting Bolts
- **B** Shoulder Bolts
- C Keeper Y - Section Y
- X Section X

- 5. Remove tine as follows:
  - a. Remove bolt (A) and keeper (B) on tine to be replaced.
  - b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
  - c. Slide tines off tine bar.
  - d. Install tines on tine bar, and secure with bolts (A) and keepers (B). Install nut with tapered side against tine bar. Do **NOT** install bolts in end tines at this time.

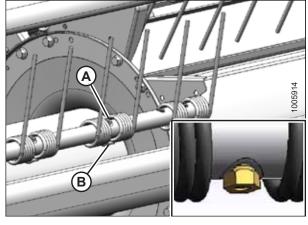



Figure 4.110: Disc #3

- 6. Assemble tine bar section **Y** (including reel bearings at discs #3 and #4) to tine bar section **X** at reel disc #3.
- 7. Position tines as shown, and install shoulder bolts (B) with keeper (C).

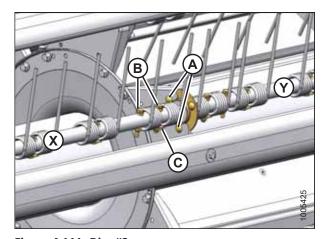



Figure 4.111: Disc #3

- A Flangette Mounting Bolts
- C Keeper
- Y Section Y
- B Shoulder Bolts X - Section X

8. Attach bearing flangettes to reel arm at discs #3 and #4 with bolts (A). Tighten bolts to 31–36 Nm (23–26 lbf·ft).

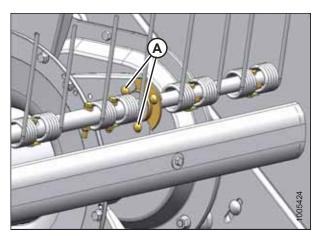



Figure 4.112: Disc #4

# 4.9.4 Replacing Tine and Bearing: Opposite Cam - Section Y

Replace tine and bearings at center section Y (Y) as follows:

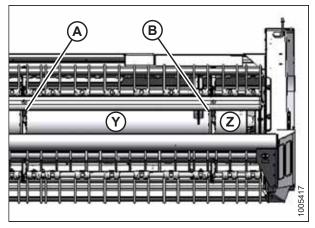



Figure 4.113: Opposite Cam – Section Y

A - Disc #3 Y - Section Y B - Disc #4 Z - Section Z

- 1. Remove shoulder bolts (A) and keeper (B) connecting tine bar sections **Z** and **Y** at reel disc #4.
- 2. Remove flangette mounting bolts (C) at reel disc #4.
- 3. Lift tine bar away from reel arms, and remove complete tine bar section **Z**, complete with bearing assembly.
- 4. To replace tine bar bearing, refer to 4.5.4 Installing Sealed Bearings, page 118.

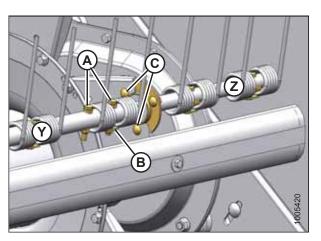



Figure 4.114: Disc #4

A - Shoulder bolts

C - Flangette Mounting Bolts Y

Z - Section Z

B - Keeper Y - Section Y

- 5. Replace tine as follows:
  - a. Remove bolt (A) and keeper (B) on tine to be replaced.
  - b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
  - c. Slide tines off tine bar.
  - d. Install tines on tine bar, and secure with bolts (A) and keepers (B). Install nut with tapered side against tine bar. Do **NOT** install bolts in end tines at this time.
- 6. Install tine bar extension **Z** including bearing to section **Y** at reel disc #4.

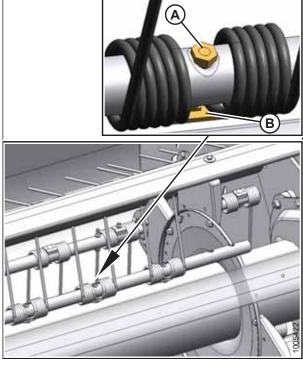



Figure 4.115: Disc #4

A - Bolt

B - Keeper

- 7. Install shoulder bolts (A) and keeper (B) with tine to connect tine bar extension.
- 8. Install flangette mounting bolts (C) at reel disc #4. Tighten to  $21-27 \, \text{Nm} \, (16-20 \, \text{lbf} \cdot \text{ft})$ .

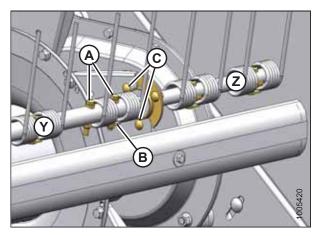



Figure 4.116: Disc #4

- A Shoulder Bolts
- C Flangette Mounting Bolts
- Z Section Z
- B Keeper Y - Section Y

# 4.9.5 Replacing Tine: Tine Bar Extension – Section Z

Replace tine and bearings at center section **Z** (Z) as follows:

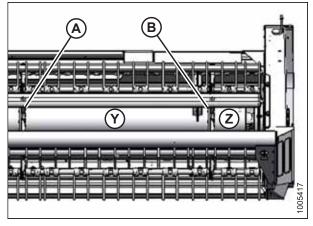



Figure 4.117: Tine Bar Extension – Section Z

A - Disc #3 Y - Section Y B - Disc #4 Z - Section Z

1. Remove bolt (A) and keepers (B) on tine to be replaced, and slide tines off tine bar.

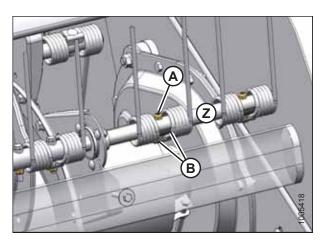



Figure 4.118: Disc #4

A - Bolt Z - Section Z B - Keepers

2. Install tines on tine bar, and secure with bolt (A) and two keepers (B). Tine (C) must be clamped between keepers (B). Install nut with flat side against tine bar extension.

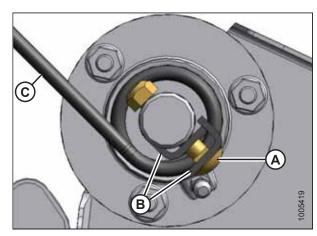



Figure 4.119: End View of Tine Bar

# 4.10 Straightening Auger Pans

The high density polyethylene auger pans are repairable and replaceable. Refer to your Dealer for details on replacing the pans.

#### IMPORTANT:

To prolong the life of the auger pan, be sure to check that reel tines do **NOT** contact the pans when adjusting the reel position or tine pitch.

Stones and other debris can deform the polyethylene pans. If this occurs, the pans can be straightened.



## **CAUTION**

To avoid personal injury, before servicing header or opening drive covers, follow procedures in 4.1 Preparing for Servicing, page 103, and 1 Safety, page 1.

- 1. Heat the deformed area with a heat gun until the polyethylene is almost sticky.
- 2. Push out the dent, and then apply a cold wet rag. Keep wetting the rag in cold water, and applying it on the area until cool. This ensures the polyethylene retains its shape.

#### NOTE:

If the dent is too severe, and has stretched the polyethylene, it may be necessary to locally remove the polyethylene. Use a plastic welder to rejoin the material. Replacement pans are also available from your Dealer.

# 4.11 Replacing Rubber Fingers

Rubber fingers should be replaced if missing or damaged.

To replace a rubber finger, follow these steps:

- 1. Remove nut and bolt (A), and then remove finger (B).
- Position new finger in holder, and then install bolt and nut. Rubber finger should be free to move after bolt is tightened.

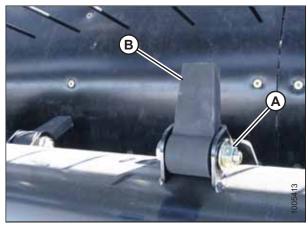



Figure 4.120: Auger Finger

# 4.12 Stripper Bar

Stripper bars help prevent the crop from wrapping around the auger and improve crop flow into the conditioner.

To maintain 1–4 mm (1/32–5/32 in.) clearance (B) between auger (A) flighting and stripper bars, bars may need replacing due to wear or damage. Shims may also need to be installed to compensate for local irregularities in the structure.

If auger position needs to be adjusted after adjusting stripper bars, refer to 3.6.4 Setting Auger Position, page 67.

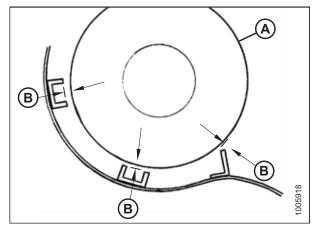



Figure 4.121: Auger to Stripper Bar Clearance

## 4.12.1 Removing Stripper Bar

Heavy crops may cause plugging across the auger due to restricted flow at the stripper bars. To address this problem, remove the lower stripper bar (A), and if necessary, the center stripper bar (B) at each end of the header.



## **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.



## **WARNING**

To avoid bodily injury or death from fall of raised machine, always lock-out lift cylinders before going under header for any reason.



Figure 4.122: Stripper Bars

To remove a stripper bar, follow these steps:

- 1. Turn off engine and remove key.
- 2. Remove bolts attaching stripper bar to pan.
- 3. Remove four nuts and bolts (A) that secure stripper bar (B) to the pan.
- 4. Replace bolts in pan.

#### NOTE:

Special countersunk bolts are available from your Dealer.

# 4.12.2 Replacing Stripper Bars



# **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.

- 1. Remove four nuts and bolts (A) that secure each stripper bar (B) (both left and right side) to the pan, and remove bars. There are six bars in total.
- 2. Position new bars (B) on pan as shown, with upper flange on front bar facing forward.
- Install three bolts and nuts (A) in each bar, and torque to 203 Nm (150 lbf·ft).
- 4. Check clearance between auger and stripper bars.
- 5. Loosen bolts (A), and add shims between stripper bars and pan at bolt locations as required to obtain clearance as shown.
- 6. Retighten bolts to specified torque.



Figure 4.123: Stripper Bars

# 4.12.3 Installing Front Stripper Bar Extensions

Extensions for the front stripper bar are provided for installation (if required for certain crop conditions), especially in tall crops that cause material to bunch up at the ends of the conditioner rolls.

Stripper bar extensions will allow the auger to carry the crop more towards the center, rather than prematurely feeding it to the conditioner.



## **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.

To install front stripper bar extensions, follow these steps:

- 1. Turn of engine and remove key.
- 2. Raise header, and engage safety props.
- 3. Remove nuts and carriage bolts (A) securing the two extensions (B) to underside of header pan support. Retain hardware for reinstallation.

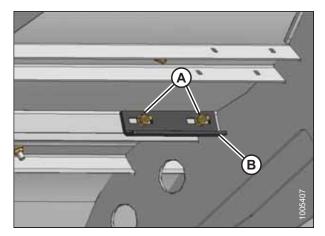



Figure 4.124: Stripper Bar Extension

- 4. Position extension (A) at inboard end of front stripper bars, and mark locations of the two holes onto the pan.
- 5. Drill two 8 mm (5/16 in.) holes at these locations.
- 6. Install extension (A) with carriage bolts (C) retained from Step *3, page 166*.
- 7. Repeat above steps for other extension.

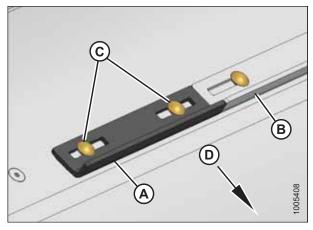



Figure 4.125: Stripper Bar Extension

- A Stripper Bar Extension
- B Stripper Bar
- C Carriage Bolts
- D Forward

# 4.13 Conditioner



# **CAUTION**

To avoid personal injury, before servicing header or opening drive covers, follow procedures in 4.1 Preparing for Servicing, page 103.

# 4.13.1 Changing Gearbox Oil



# **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

#### NOTE:

Change conditioner drive gearbox lubricant after the first 50 hours of operation, and every 1000 hours (or 3 years) thereafter.

To change the oil in the conditioner gearbox, follow these steps:

- 1. Lower header to ground.
- 2. Turn off engine and remove key.
- 3. Open driveshield (A). For instruction, refer to 4.2 Opening/ Closing Driveshield, page 104.

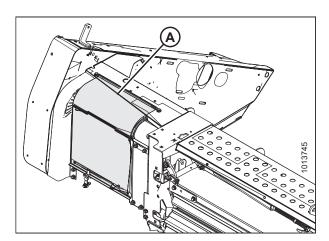



Figure 4.126: Driveshield

- 4. Place a suitable container under gearbox drain to collect oil.
- 5. Remove breather (A) and check plug (B).

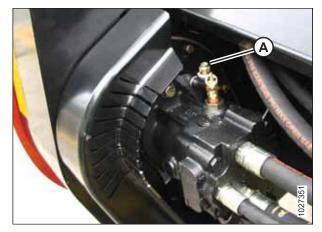



Figure 4.127: Gearbox Breather



Figure 4.128: Check Plug

6. Remove drain plug (A) and allow oil to drain. Replace drain plug once oil has drained.

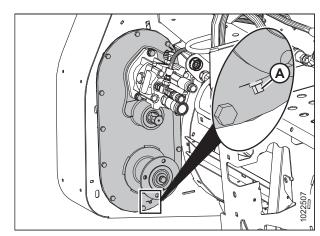



Figure 4.129: Gearbox Drain

- 7. Add oil at (A) to required level. Refer to inside back cover for recommended lubricant.
- 8. Oil is at required level when it runs out of check plug (B).

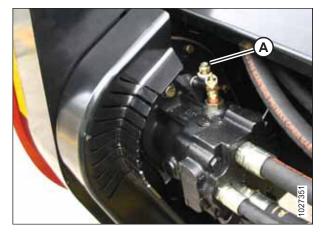



Figure 4.130: Gearbox Breather



Figure 4.131: Check Plug

# 4.13.2 Removing Forming Shield



# **WARNING**

To avoid injury or death from unexpected start-up of machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Remove hairpins (B), and washers that secure straps (A) to frame.
- 3. Hold onto forming shield, and slip straps off pins. Lower forming shield to ground.

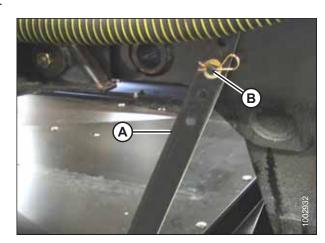



Figure 4.132: Forming Shield Straps

- 4. Remove two clevis pins (B) from forming shield forward end.
- 5. Lift forming shield off bolts (A) in windrower legs, and lower to ground. Replace clevis pins in forming shield.
- 6. Slide forming shield out from under windrower, or drive windrower away from forming shield.

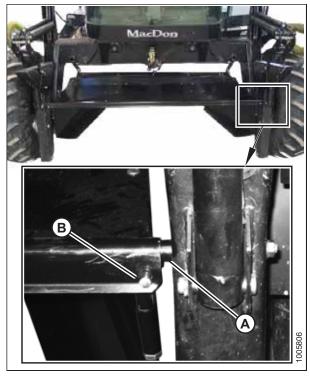



Figure 4.133: Forming Shield Attached to Windrower Legs

# 4.13.3 Disassembling Forming Shield

To disassemble the forming shield, follow these steps:

- 1. Invert forming shield onto top.
- 2. Remove lynch pin (A) from adjuster rods (B), and disassemble rods from side deflectors (C).

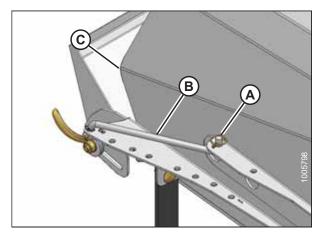



Figure 4.134: Forming Shield

3. Disassemble nut (A) from bolt (B), and lift deflector (C) and washer (D) off forming shield. Repeat for other deflector.

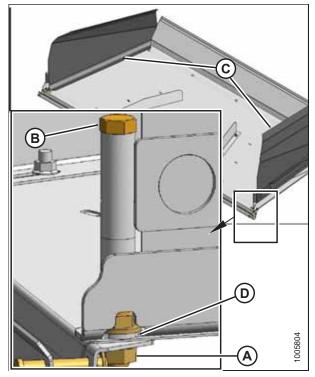



Figure 4.135: Forming Shield

- 4. Disassemble locking handles (A), and remove bolts.
- 5. Disassemble fluffer shield (B) from forming shield cover.

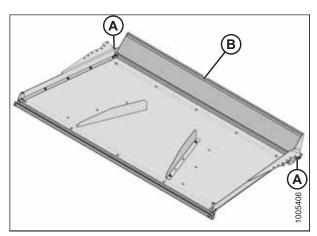



Figure 4.136: Cover

6. Remove bolts (A) to remove deflector fins (B) from cover.

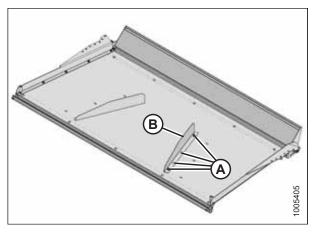



Figure 4.137: Cover

# 4.13.4 Assembling Forming Shield

To assemble the forming shield, follow these steps:

1. Attach deflector fins (B) to forming shield cover with bolts (A).

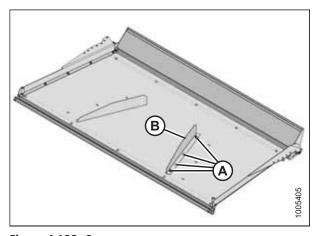



Figure 4.138: Cover

- 2. Attach fluffer shield (B) to forming shield cover.
- 3. Attach locking handles (A) to forming shield cover with bolts.

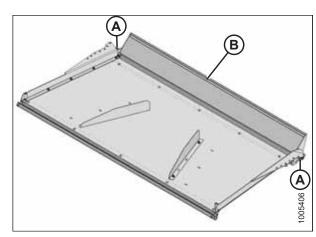



Figure 4.139: Cover

4. Attach deflectors (C) and washers (D) to forming shield cover with nuts (A) and bolts (B).

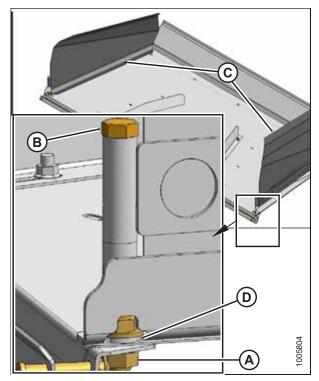



Figure 4.140: Forming Shield

5. Attach adjuster rods (B) to side deflectors (C) with lynch pin (A).

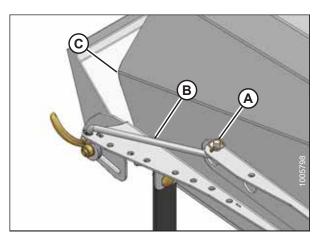



Figure 4.141: Forming Shield

# 4.13.5 Installing Forming Shield

 If attached, remove header from the windrower for ease of installing the forming shield. Refer to windrower operator's manual for procedure.

#### NOTE:

Do **NOT** install the two triangular-shaped plates from the forming shield kit. Triangular plates are used with rotary headers.

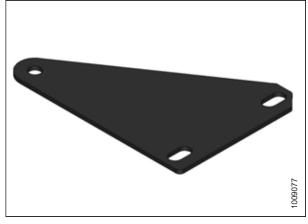



Figure 4.142: Triangular Plate

2. Install bolt (A) with spacer (B) and nut on each windrower leg in the upper hole. Hardware is supplied with forming shield kit.

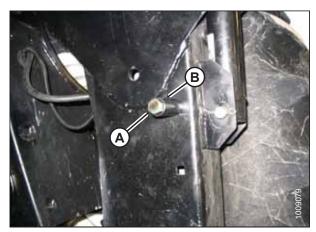



Figure 4.143: Windrower Leg

3. Remove two clevis pins (A) from forward end of forming shield.

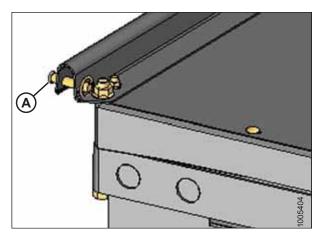



Figure 4.144: Forming Shield

4. Position forming shield (A) under windrower frame.

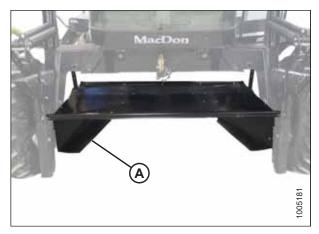



Figure 4.145: Forming Shield under Windrower

5. Position forming shield onto bolts (A) in windrower legs and secure with clevis pins (B) and hairpin.

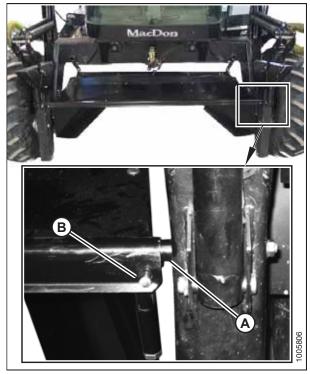



Figure 4.146: Forming Shield Attached to Windrower Legs

6. Lift aft end of the forming shield and attach straps (B) to pins (A) on the windrower frame. Install washer and hairpin to secure strap. Use the middle hole and adjust height to suit the crop.

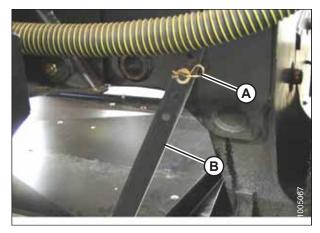



Figure 4.147: Forming Shield Attached to Windrower Frame

- 7. Set forming shield side deflectors to desired width by positioning adjuster bars (A). Use the same hole location on both sides.
  - Position deflectors at the narrowest setting for a narrow windrow (silage for example).
  - Position deflectors at the widest setting for a wide windrow.

Refer to 3.6.14 Positioning the Forming Shields, page 83.

8. Adjust fluffer shield (C) to middle position. Loosen handles (B) if required. Refer to *Positioning Rear Deflector* (Fluffer Shield), page 84.

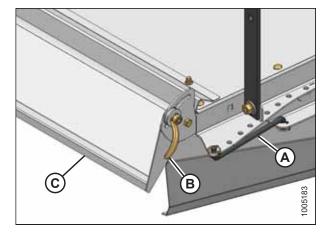



Figure 4.148: Side Deflectors and Fluffer Shield

# 4.13.6 Removing Header Drive Motor

This procedure applies to A40D and A40DX (excluding Grass Seed A40D and Grass Seed A40DX) double-knife auger headers.



## **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Shut down the engine, and remove key from ignition.
- Open driveshield (A). For instruction, refer to 4.2 Opening/ Closing Driveshield, page 104.

#### **IMPORTANT:**

Mark hoses and make a diagram of hose routing. This is useful during reassembly.

3. Disconnect hoses at couplers on motor.

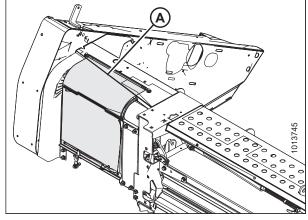



Figure 4.149: Driveshield

 Remove two bolts (A) securing motor to gearbox, and remove motor.

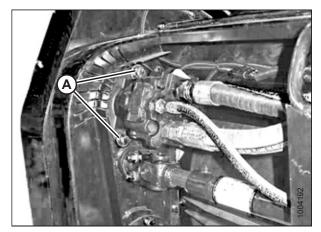



Figure 4.150: Header Drive Motor

## 4.13.7 Installing Header Drive Motor

This procedure applies to A40D, and A40DX (excluding Grass Seed A40D and Grass Seed A40DX) double-knife auger headers.



# **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

Install hydraulic motor onto the gearbox as follows:

1. Shut down the engine, and remove the key from the ignition.

2. Open driveshield (A). For instruction, refer to 4.2 Opening/Closing Driveshield, page 104.

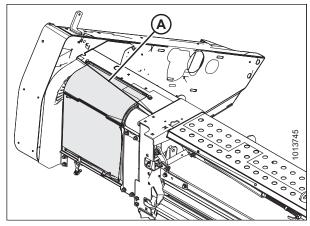



Figure 4.151: Driveshield

- 3. Apply light coat of silicone to motor flange, and position motor on gearbox as shown until mounting holes are aligned and pinion engages gear in gearbox.
- 4. Clean off excess sealant from motor flange and gearbox face.
- 5. Install bolts (A) and washers, and torque to 102 Nm (75 lbf·ft).
- 6. Reconnect hoses to motor.

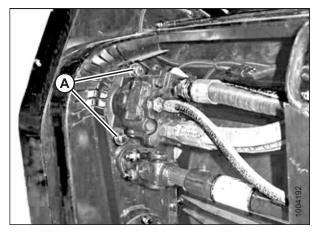



Figure 4.152: Motor - Single Knife

# 4.13.8 Removing Conditioner Gearbox



## **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Shut down the engine, and remove the key from the ignition.
- 2. Open driveshield (A). For instruction, refer to 4.2 Opening/Closing Driveshield, page 104.

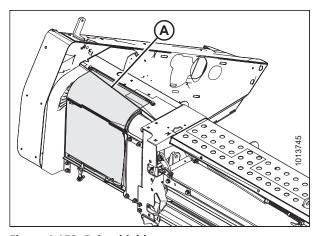



Figure 4.153: Driveshield

3. Remove two bolts (A) securing channel (B) to frame.

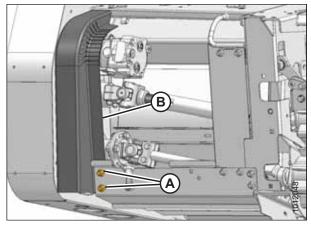



Figure 4.154: Conditioner Drive

4. Remove two hex bolts (A), and one carriage bolt (B) securing channel (C) to endsheet and remove channel (C).

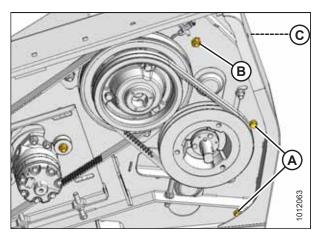



Figure 4.155: Header Drive

 Remove two bolts (A) securing motor (B) to gearbox. Do NOT disconnect hoses.

## NOTE:

Hoses not shown for clarity.

6. Carefully pull motor (B) from gearbox and move it clear of work area.

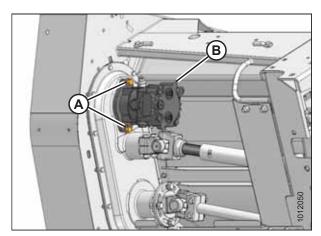



Figure 4.156: Gearbox Motor

- 7. Remove two bolts (A) in upper driveline (B).
- Pull driveline (B) off gearbox. If necessary, use a screwdriver or equivalent to spread yoke. Move driveline clear of work area.
- Remove four bolts (C) from flange on lower driveline (D) and remove driveline from gearbox. Move driveline clear of work area.

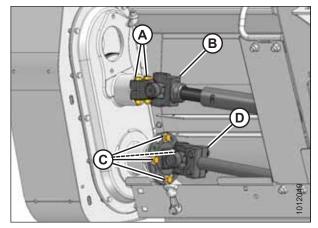



Figure 4.157: Drivelines

- 10. Remove knife drive V-belts (A). Refer to *Removing Left V-Belts, page 142*.
- 11. Remove the three bolts (B) from the tapered bushing (D).
- 12. Install two bolts (B) in the two threaded holes (C) in bushing (D) and tighten to release the bushing.
- 13. Remove bushing (D) and key.
- 14. Remove pulley (E).



## **CAUTION**

Be sure to support the gearbox when removing the nuts. Gearbox weighs 34 kg (79 lb.).

15. Remove three nuts (A) securing gearbox (B) to frame and remove gearbox (B).

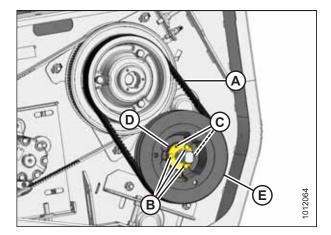



Figure 4.158: Knife Drive Belts

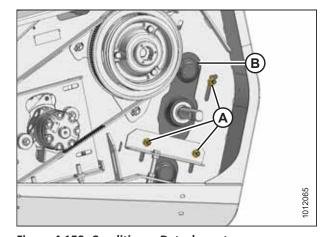



Figure 4.159: Conditioner Detachment

# 4.13.9 Installing Conditioner Gearbox



## **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Shut down the engine, and remove the key from the ignition.
- Open driveshield (A). For instruction, refer to 4.2 Opening/ Closing Driveshield, page 104.

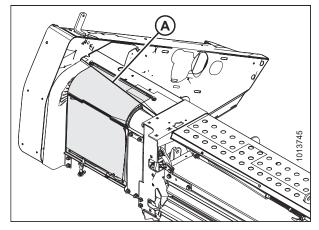



Figure 4.160: Driveshield

 Position gearbox (B) as shown, picking up the three holes in the endsheet and secure with three flanged lock nuts (A).
 Do NOT fully tighten.

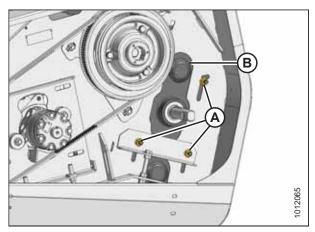



Figure 4.161: Conditioner Gearbox

- 4. Locate key (A) in shaft.
- 5. Place pulley (B) onto shaft.

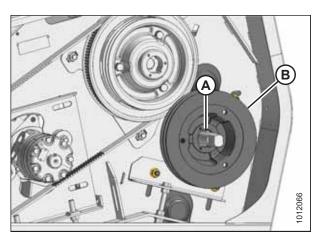
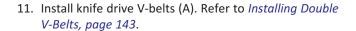
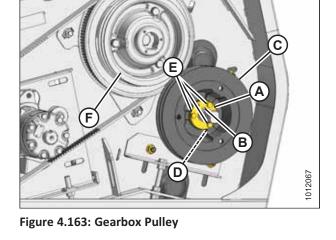





Figure 4.162: Gearbox Pulley

- 6. Place tapered bushing (A) onto shaft, align with key (B) in shaft and push bushing (A) into place.
- 7. Align slot in pulley (C) with key (D) in tapered bushing and slide pulley (C) onto bushing (A).
- 8. Align pulley (C) and countershaft pulley (F) faces to within 1.5 mm (1/16 in.).
- 9. Install three bolts (E) in tapered bushing (A) and tighten to 25 Nm (18 lbf·ft).
- 10. Tap bushing (A) and torque bolts. Repeat until bolts no longer turn at 25 Nm (18 lbf·ft).





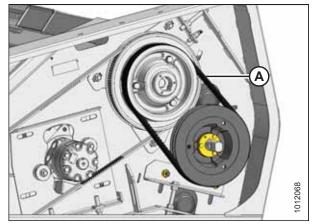
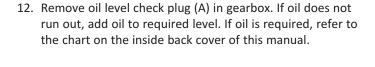




Figure 4.164: Header Drive



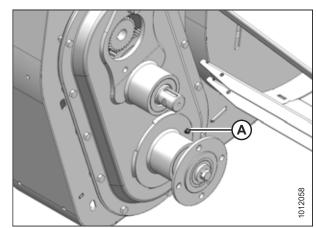



Figure 4.165: Gearbox

- 13. Align keyway in upper driveline yoke (B) with key in gearbox shaft and attach yoke (B) to shaft.
- 14. Install two hex head bolts (A) and flanged lock nuts to secure yoke. Tighten bolts.
- 15. Install timing flange on lower driveline (D) onto lower shaft on gearbox with four hex head bolts (C), two flat washers (E) under each bolt head, lock washers (F) and plain nuts (G). Do NOT tighten.
- A B B LOOZIOI

Figure 4.166: Upper and Lower Drivelines

- 16. Apply a light coat of silicone to motor flange.
- 17. Position hydraulic motor (A) onto gearbox as shown and secure with two hex head bolts (B) with thread locking compound, two flat washers (C), and two lock washers (D). Torque to 112 Nm (83 lbf·ft).
- 18. Time the rolls. Refer to 4.13.11 Checking/Adjusting Roll Timing, page 187.

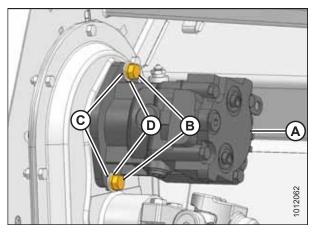



Figure 4.167: Hydraulic Motor

- 19. Position channel (B) against endsheet as shown, picking up the three holes in endsheet.
- 20. Install two carriage bolts and nuts (A) in lower two holes.

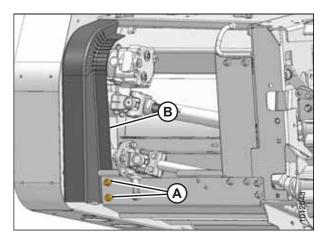



Figure 4.168: Conditioner Drive

- 21. Install carriage bolt and nut in upper hole (B) with head facing inboard.
- 22. Install two hex bolts with lock washers and flat washers in remaining locations (A).
- 23. Tighten hardware.
- 24. Close conditioner driveshield and endshield.

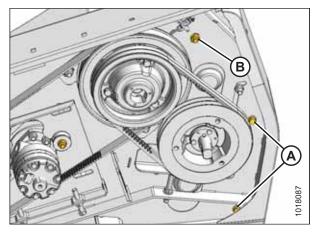



Figure 4.169: Header Drive

# 4.13.10 Checking/Adjusting Roll Alignment

Rolls are aligned at the factory, but adjustment is provided in case the rolls become misaligned during operation.



# **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Lower header until it rests on the ground.
- 2. Shut down the engine, and remove the key from the ignition.
- 3. Open driveshield (A). For instruction, refer to 4.2 Opening/Closing Driveshield, page 104.

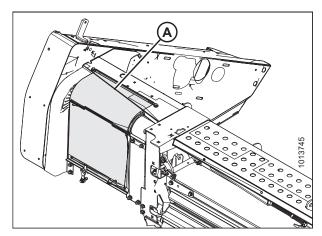



Figure 4.170: Driveshield

4. Locate roll alignment cover (A).

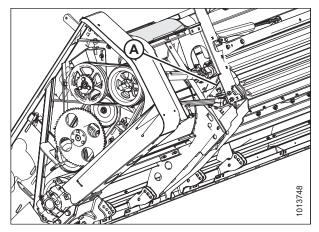



Figure 4.171: Roll Alignment Cover

5. Loosen bolt (A), and rotate cover (B) to expose access port.

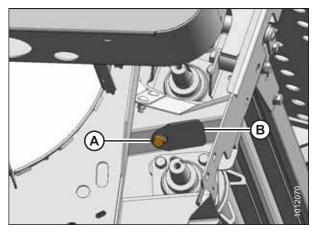



Figure 4.172: Roll Alignment

6. Examine roll bar spacing (X) at each end of the rolls. The rolls are aligned if (X) varies less than 1.6 mm (1/16 in.) from one end to the other.

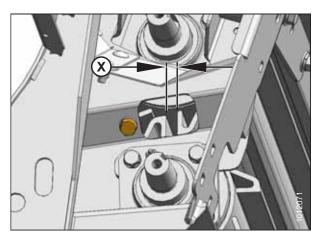



Figure 4.173: Roll Bar Spacing

- 7. If roll bar spacing (X) (as shown in Step *6, page 186*) varies more than 1.6 mm (1/16 in.), align rolls as follows:
  - a. Remove nuts and bolts (A), and remove shims (B). The shims can be lifted off the pivot rod.
  - b. Move upper roll until dimension (X) at both ends looking through port (as shown in Step 6, page 186) is within 1.6 mm (1/16 in.).
  - c. Reinstall shims, ensuring hardened washer (C) is against the pivot tube.
  - d. Reinstall bolts (A) and nuts.



- 9. Close cover (B), and tighten bolt (A).
- 10. Close conditioner driveshield.

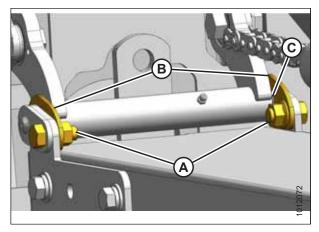



Figure 4.174: Adjustment

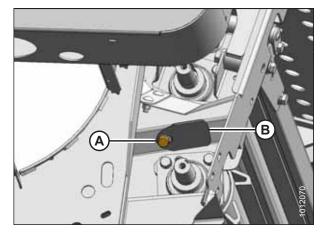



Figure 4.175: Access Cover

# 4.13.11 Checking/Adjusting Roll Timing

The rolls must be correctly timed with each steel bar on one roll centered between two bars of the other roll.



# **WARNING**

To avoid bodily injury or death from fall of raised machine, always lock-out lift cylinders before going under header for any reason.

1. Shut down the engine, and remove the key from the ignition.

2. Open driveshield (A). For instruction, refer to 4.2 Opening/Closing Driveshield, page 104.

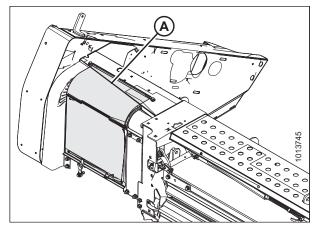



Figure 4.176: Driveshield

3. Loosen bolt (A), and rotate cover (B) to expose access port at each end of conditioner.

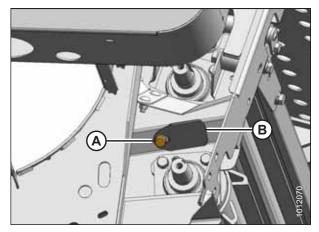



Figure 4.177: Access Cover

4. Examine roll spacing (X) at each end of the rolls with header fully lowered. Each steel bar on one roll should be centered between two bars of the other roll so that distance (X) is 12 mm (1/2 in.).

## NOTE:

If the distance (X) varies more than 1.6 mm (1/16 in.) from one end to the other, the rolls should be realigned. Refer to 4.13.10 Checking/Adjusting Roll Alignment, page 185.

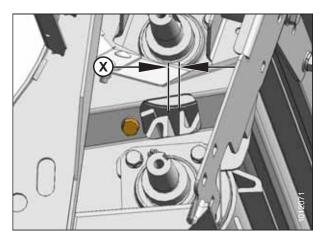



Figure 4.178: Roll Timing

- 5. If required, adjust the roll timing as follows:
  - a. Loosen four bolts (A) in slots of yoke plate on lower driveline.
  - b. Turn rolls to achieve best timing.
  - c. When roll timing is satisfactory, tighten bolts (A) to secure the position.
- 6. Recheck distance between the bars at both ends. Refer to Step *4, page 188*.
- 7. Close cover (B), and tighten bolt (A).
- 8. Close driveshield.



Figure 4.179: Timing Flange

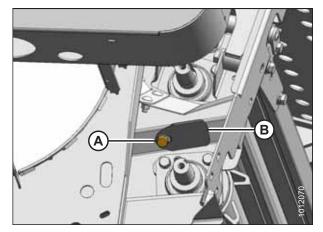



Figure 4.180: Access Cover

# 4.14 Replacing Skid Shoe Wear Plate

Skid shoes are equipped with replaceable wear plates that can be reversed for increased service life. It is recommended that wear plates be replaced when the skid shoe support bracket becomes exposed.



## **WARNING**

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

To replace skid shoe wear plates, follow these steps:

- 1. Raise header, and engage safety props.
- 2. Turn off engine and remove key.
- 3. Remove bolts and clips (A) from forward edge of skid shoe.

#### NOTE:

Use a socket and ratchet wrench to access the nuts.

 Remove clevis pins (B), and disengage tabs on skid shoe from slots in cutterbar.

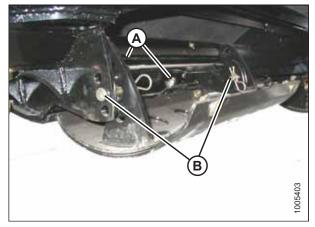



Figure 4.181: Skid Shoe

- 5. Remove eight bolts (A), and remove wear plates (B).
- 6. Position replacement wear plate (B) as shown. (The same wear plate can be reinstalled, but in the reverse position.)
- 7. Secure wear plate with bolts and nuts (A).

#### **IMPORTANT:**

If bolt heads are worn down, replace them with new  $1/2 \times 1$  in. carriage bolts.

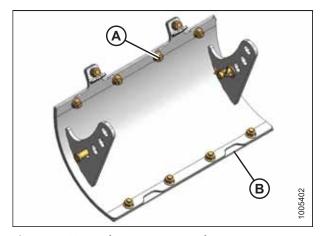



Figure 4.182: Replacement Wear Plate

8. Insert tabs on skid shoe into slots (A) on cutterbar at inboard mounting locations on frame, and secure with clevis pin (B).

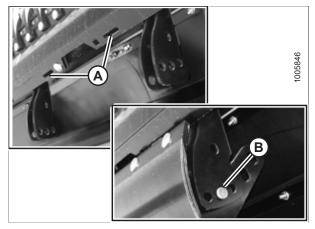



Figure 4.183: Inboard Cutterbar Mounting Location

9. Reinstall clips (A) with bolts and nuts removed at Step *3, page 190* to secure skid shoe to cutterbar.

### NOTE:

Use a socket and ratchet wrench to access the nuts.

10. Remove clevis pin (B), adjust skid shoe to desired height, and reinstall two clevis pins. Secure with lynch pins.

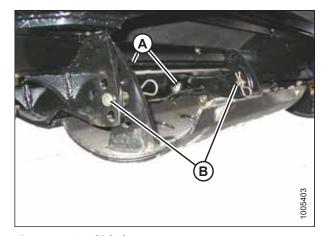



Figure 4.184: Skid Shoe

# 4.15 Gauge Rollers

Gauge rollers can be removed for replacement or repair.

## 4.15.1 Removing Gauge Rollers



# **DANGER**

To avoid bodily injury or death from unexpected start-up or fall of a raised machine, always stop engine and remove key before leaving the operator's seat, and always engage safety props before going under the machine for any reason.

- 1. Raise header, and engage safety props.
- 2. Shut down the engine, and remove the key from the ignition.
- 3. Remove bolts and clips (A) from forward edge of gauge roller assembly.

### NOTE:

Use a socket and ratchet wrench to access the nuts.

- 4. Remove hairpins on pins (B).
- 5. Support gauge roller, and remove pins (B).
- 6. Disengage tabs on mounting plate from slots in cutterbar to remove roller assembly.



Figure 4.185: Gauge Roller

# 4.15.2 Installing Gauge Rollers

 Position gauge roller assembly below cutterbar, and insert tabs on roller assembly into slots (A) in frame.

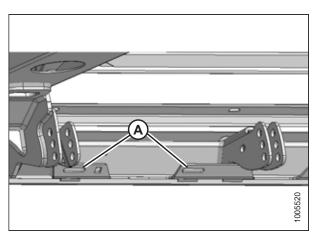



Figure 4.186: Gauge Roller Frame Location

- 2. Secure with two pins (B) at lowest position.
- 3. Attach clips (A) with bolts and nuts to secure roller assembly to cutterbar.

## NOTE:

Use a socket and ratchet wrench to access the nuts.

4. Tighten nuts.

- 5. Remove pins (A), and adjust rollers to desired height. Reinstall two pins (A).
- 6. Ensure that nut (B) on each pin is seated in adjacent hole in support bracket.
- 7. Secure pins with hairpins (C).



Figure 4.187: Gauge Roller Assembly

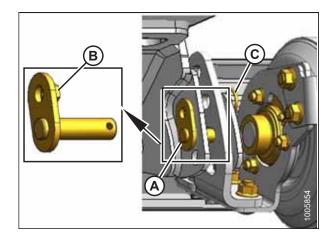



Figure 4.188: Support Bracket

# 4.16 Maintaining the Electrical System

Use electrical tape and wire clips as required to prevent wires from dragging or rubbing.

Keep lights clean, and replace defective bulbs.

To replace light bulbs, follow these steps:

- 1. Using a Phillips screwdriver, remove screws (A) from fixture, and remove plastic lens.
- 2. Replace bulb, and reinstall plastic lens and screws.

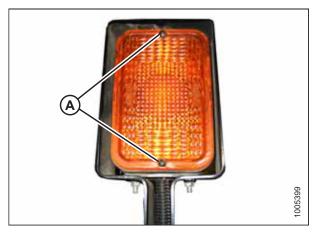



Figure 4.189: A40D Hazard Light

# **Chapter 5: Optional Equipment**

# **5.1** Options and Attachments

## 5.1.1 Additional Skid Shoes

In addition to the standard skid shoes, two additional skid shoes may be added for extra control of cutting height and protection of cutting components.

MD #B4594



Figure 5.1: Skid Shoe

# 5.1.2 Gauge Roller Kit

The gauge roller kit replaces the outer skid shoes with rollers. They can be adjusted for varying cutting heights.

MD #B4593



Figure 5.2: Gauge Roller

## 5.1.3 Replacement Reel Bat Kit

This kit consists of one complete bat assembly for ease of replacement. Separate kits are available for different header widths:

4.3 m (14 ft.): MD #B4716
4.9 m (16 ft.): MD #B4717
5.5 m (18 ft.): MD #B4718

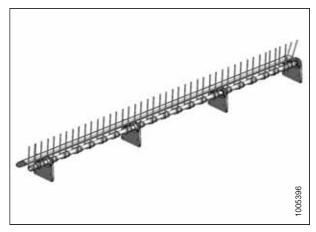



Figure 5.3: Reel Bat Assembly

## 5.1.4 Stub Guard Conversion Kit

Stub guards, complete with top guides and adjuster plates are designed to cut tough crops.

Separate kits are available for different header widths:

4.3 m (14 ft.) Double-Knife: MD #B4956
4.9 m (16 ft.) Double-Knife: MD #B4715
5.5 m (18 ft.) Double-Knife: MD #B4957

Installation and adjustment instructions are included with the kit.

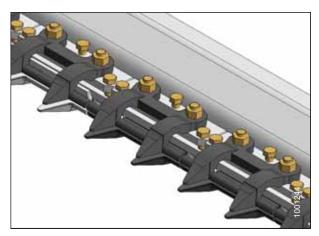



Figure 5.4: Stub Guards

# 5.1.5 Tall Crop Divider Kit

Tall crop dividers attach to the ends of the header for clean crop dividing and reel entry in tall crops. The kit includes left and right dividers, lean bar extensions and attachment hardware.

MD #B4690



Figure 5.5: Tall Crop Divider (Left Side)

# **Chapter 6: Unloading and Assembly**

Header-specific instructional manuals for unloading, assembly and set-up procedures are included with your shipment.

| Header Description | Used on                  | Instruction Part Number |
|--------------------|--------------------------|-------------------------|
| A40D, A40DX        | Self-Propelled Windrower | MD #214805              |

# **Chapter 7: Troubleshooting**

# 7.1 Header Performance

| Problem                                     | Solution                                       | Section                                                              |  |  |  |  |
|---------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| Symptom: Carryover of crop on reel          | Symptom: Carryover of crop on reel             |                                                                      |  |  |  |  |
| Reel speed too fast                         | Reduce reel speed (sprocket size).             | 3.6.3 Adjusting Reel Speed, page 67                                  |  |  |  |  |
| Symptom: Material build-up on header frame  |                                                |                                                                      |  |  |  |  |
| Auger speed too fast                        | Reduce auger speed (sprocket size).            | 3.6.2 Adjusting Auger Speed, page 67                                 |  |  |  |  |
| Very light crop                             | Reduce windrower rpm.                          | -                                                                    |  |  |  |  |
| Symptom: Insufficient conditioning of sten  | 15                                             |                                                                      |  |  |  |  |
| Roll gap too large                          | Decrease roll gap.                             | 3.6.12 Adjusting Conditioner Roll<br>Gap, page 81                    |  |  |  |  |
| Symptom: Leaves damaged, crushed or str     | ipped off stems                                |                                                                      |  |  |  |  |
| Reel speed too fast                         | Reduce reel speed.                             | 3.6.3 Adjusting Reel Speed, page 67                                  |  |  |  |  |
| Roll gap too small                          | Increase roll gap.                             | 3.6.12 Adjusting Conditioner Roll<br>Gap, page 81                    |  |  |  |  |
| Rolls improperly timed                      | Adjust roll timing.                            | 4.13.11 Checking/Adjusting Roll<br>Timing, page 187                  |  |  |  |  |
| Symptom: Slow crop drying                   |                                                | _                                                                    |  |  |  |  |
| Rolls not crimping crop sufficiently        | Decrease roll gap.                             | 3.6.12 Adjusting Conditioner Roll<br>Gap, page 81                    |  |  |  |  |
| Crop is spread too narrow                   | Adjust forming shields for wider swath.        | 3.6.14 Positioning the Forming                                       |  |  |  |  |
| Crop is bunched in windrow                  | Adjust forming shields/baffle.                 | Shields, page 83                                                     |  |  |  |  |
| Symptom: Excessive drying or bleaching of   | crop                                           |                                                                      |  |  |  |  |
| Excessive crimping                          | Increase roll gap.                             | 3.6.12 Adjusting Conditioner Roll<br>Gap, page 81                    |  |  |  |  |
| Crop is spread too wide in windrow          | Adjust forming shields.                        | 3.6.14 Positioning the Forming<br>Shields, page 83                   |  |  |  |  |
| Symptom: Leaving small strip of flattened,  | uncut material                                 |                                                                      |  |  |  |  |
| Crowding of the uncut material              | Steer windrower slightly away from uncut crop. | _                                                                    |  |  |  |  |
| Reel position incorrect                     | Move reel forward and down.                    | 3.6.5 Setting Reel Position, page 70                                 |  |  |  |  |
| Knife sections or guards are worn or broken | Replace worn or broken parts.                  | 4.7.1 Replacing Knife Section,<br>page 120<br>4.7.7 Guards, page 124 |  |  |  |  |
| Symptom: Long stubble in down crop          |                                                |                                                                      |  |  |  |  |
| Cutting height too high                     | Lower cutting height with skid shoes.          | 3.6.8 Setting Cutting Height, page 75                                |  |  |  |  |

| Problem                                                 | Solution                                                                                | Section                                                                 |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| Ground speed too fast                                   | Slow down.                                                                              | 3.10 Selecting Ground Speed,<br>page 96                                 |  |  |  |  |
| Header angle too flat for guards to pick up down crop   | Increase header angle.                                                                  | 3.6.7 Adjusting Header Angle, page 75                                   |  |  |  |  |
| Reel position incorrect                                 | Move reel forward and down.                                                             | 3.6.5 Setting Reel Position, page 70                                    |  |  |  |  |
| Tine aggressiveness too low                             | Rotate cam clockwise (viewed from RH end) for more aggressive tine action.              | 3.6.6 Setting Tine<br>Aggressiveness, page 74                           |  |  |  |  |
| Symptom: Pulling material by the roots or               | tall material leaning into machine                                                      |                                                                         |  |  |  |  |
| Ground speed too slow                                   | Increase ground speed.                                                                  | 3.10 Selecting Ground Speed,<br>page 96                                 |  |  |  |  |
| Reel position incorrect                                 | Move reel forward and down.                                                             | 3.6.5 Setting Reel Position, page 70                                    |  |  |  |  |
| Symptom: Ragged or uneven cutting of cro                | p                                                                                       |                                                                         |  |  |  |  |
| Bent or misaligned guards causing poor shearing action  | Align guards for proper shearing action.                                                | Aligning Guard, page 125                                                |  |  |  |  |
| Bent knife causing binding                              | Straighten bent knife. Check alignment, and adjust if necessary.                        | 4.7.2 Removing Knife, page 121                                          |  |  |  |  |
| Ground speed too fast                                   | Slow down. Ground speed should not exceed 13 km/h (8 mph).                              | 3.10 Selecting Ground Speed,<br>page 96                                 |  |  |  |  |
| Header angle too flat for guards to pick up down crop   | Increase header angle.                                                                  | 3.6.7 Adjusting Header Angle, page 75                                   |  |  |  |  |
| Header float too light, causing bouncing                | Adjust to heavier float setting.                                                        | 3.6.9 Checking and Adjusting<br>Float – M Series Windrowers,<br>page 76 |  |  |  |  |
| Reel position incorrect                                 | Move reel forward and down.                                                             | 3.6.5 Setting Reel Position, page 70                                    |  |  |  |  |
| Relief valve pressure too low                           | Replace valve.                                                                          | See Dealer                                                              |  |  |  |  |
| Knife drive belt too loose                              | Increase belt tension.                                                                  | 4.8.1 Header Knife Drive, page<br>142                                   |  |  |  |  |
| Knife sections or guards are worn or broken             | Replace worn or broken parts.                                                           | 4.7.1 Replacing Knife Section,<br>page 120<br>4.7.7 Guards, page 124    |  |  |  |  |
| Symptom: Conditioner plugging; knife plug               | Symptom: Conditioner plugging; knife plugging; uneven formation and bunching of windrow |                                                                         |  |  |  |  |
| Ground speed too fast                                   | Slow down.                                                                              | 3.10 Selecting Ground Speed,<br>page 96                                 |  |  |  |  |
| Roll gap too large for proper feeding                   | Decrease roll gap.                                                                      | 3.6.12 Adjusting Conditioner Roll<br>Gap, page 81                       |  |  |  |  |
| Roll gap too small in thick stemmed cane-<br>type crops | Increase roll gap.                                                                      | _                                                                       |  |  |  |  |
| Rolls improperly timed                                  | Adjust roll timing.                                                                     | 4.13.11 Checking/Adjusting Roll<br>Timing, page 187                     |  |  |  |  |

| Problem                                                     | Solution                                                          | Section                                                                 |
|-------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|
| Extremely thick or wet undergrowth                          | Raise cutting height to clear undergrowth.                        | 3.6.8 Setting Cutting Height, page 75                                   |
| , ,                                                         | Consider use of stub guards.                                      | 4.7.7 Guards, page 124                                                  |
| Header float too heavy                                      | Adjust to lighter float setting.                                  | 3.6.9 Checking and Adjusting<br>Float – M Series Windrowers,<br>page 76 |
| Wet undergrowth                                             | Cut when undergrowth is dry.                                      | _                                                                       |
| Reel position incorrect                                     | Move reel back and down (close to guards).                        | 3.6.5 Setting Reel Position, page<br>70                                 |
| Knife drive belt too loose                                  | Adjust belt tension.                                              | 4.8.1 Header Knife Drive, page<br>142                                   |
| Knife hold-downs improperly adjusted                        | Adjust hold-downs so knife works freely.                          | 4.7.8 Hold-Downs, page 132                                              |
| Knife sections or guards are worn or broken                 | Replace worn or broken parts.                                     | 4.7.1 Replacing Knife Section,<br>page 120<br>4.7.7 Guards, page 124    |
| Reel not feeding properly in heavy crops                    | Decrease ground speed.                                            | 3.10 Selecting Ground Speed,<br>page 96                                 |
| Bent or misaligned guards causing poor shearing action      | Align guards for proper shearing action.                          | Aligning Guard, page 125                                                |
| Forming shields improperly adjusted - fluffer too low       | Adjust forming shields, raise fluffer.                            | 3.6.14 Positioning the Forming<br>Shields, page 83                      |
| Fluffer bypassing or dragging crop                          | Adjust fluffer for proper crop control.                           | 3.6.14 Positioning the Forming<br>Shields, page 83                      |
| Auger to stripper clearance too wide                        | Adjust auger to stripper bars clearance.                          | 3.6.4 Setting Auger Position, page 67                                   |
| Roll gap too large                                          | Adjust roll gap.                                                  | 3.6.12 Adjusting Conditioner Roll<br>Gap, page 81                       |
| Conditioner running too slow                                | Maintain rated knife / conditioner speed.                         | 2.2 Product Specifications, page<br>21                                  |
| Uneven crop flow across auger                               | Remove front stripper bar or stripper bar extension if installed. | 4.12 Stripper Bar, page 165                                             |
| Excessive center feeding of crop                            | Remove front stripper bar extensions if installed.                | 4.12 Stripper Bar, page 165                                             |
| Build up of crop at ends of rolls, especially in tall crops | Add front stripper bar extension.                                 | 4.12 Stripper Bar, page 165                                             |
| Symptom: Uneven windrow formation in I                      | ight crop                                                         |                                                                         |
| Rear of feed pan too low                                    | Raise rock drop tine bar.                                         | 3.6.11 Setting Feed Pan and<br>Rock Drop Tine Position, page 80         |
| Symptom: Reel causes seed loss (e.g. grass                  | seed)                                                             |                                                                         |
| Reel speed too fast                                         | Adjust flow control on windrower.                                 | 3.6.3 Adjusting Reel Speed, page<br>67                                  |
| Header angle too steep, causing tines to contact ground     | Flatten header angle, and check header float.                     | 3.6.9 Checking and Adjusting<br>Float – M Series Windrowers,<br>page 76 |

| Problem                                            | Solution                                                                                                                 | Section                                                                           |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Reel not correctly positioned                      | Lower reel speed, move reel rearward, as close as possible to auger, and downward as close as possible to knife and pan. | 3.6.3 Adjusting Reel Speed, page<br>67<br>3.6.5 Setting Reel Position, page<br>70 |  |  |
| Symptom: Auger plugging in heavy grass se          | eed                                                                                                                      |                                                                                   |  |  |
| Poor crop flow across auger                        | Remove lower stripper bar and middle stripper bar if necessary.                                                          | 4.12 Stripper Bar, page 165                                                       |  |  |
| Symptom: Plugging at delivery opening in l         | heavy grass seed                                                                                                         |                                                                                   |  |  |
| Opening too narrow                                 | Move pan extensions to widest position.                                                                                  | 3.9 Grass Seed Special, page 91                                                   |  |  |
| Symptom: Grass seed windrow too wide or too narrow |                                                                                                                          |                                                                                   |  |  |
| Pan extensions not adjusted properly               | Adjust pan extensions.                                                                                                   | 3.9 Grass Seed Special, page 91                                                   |  |  |

## 7.2 Mechanical

| Problem                                                                                                     | Solution                                                                          | Section                                                                                                                                        |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Symptom: Auger and/or conditioner rolls                                                                     | Symptom: Auger and/or conditioner rolls damaged by stones                         |                                                                                                                                                |  |  |  |  |  |
| Feed pan doesn't allow stones to fall through.                                                              | Lower rock-drop tines.                                                            | 3.6.11 Setting Feed Pan and<br>Rock Drop Tine Position, page 80                                                                                |  |  |  |  |  |
| Symptom: Excessive breakage of knife sec                                                                    | Symptom: Excessive breakage of knife sections or guards                           |                                                                                                                                                |  |  |  |  |  |
| Ground speed too high in stony conditions                                                                   | Reduce ground speed.                                                              | 3.10 Selecting Ground Speed,<br>page 96                                                                                                        |  |  |  |  |  |
| Cutting height too low in stony conditions                                                                  | Raise cutting height with skid shoes.                                             | 3.6.8 Setting Cutting Height, page 75                                                                                                          |  |  |  |  |  |
| Header angle too steep in stony conditions                                                                  | Decrease header angle.                                                            | 3.6.7 Adjusting Header Angle, page 75                                                                                                          |  |  |  |  |  |
| Header float too heavy in stony conditions                                                                  | Adjust to lighter float setting.                                                  | 3.6.9 Checking and Adjusting<br>Float – M Series Windrowers,<br>page 76                                                                        |  |  |  |  |  |
| Knife speed too slow                                                                                        | Maintain proper rpm on PTO. Check for proper match of pump and gear-drive at PTO. | 2.2 Product Specifications, page<br>21                                                                                                         |  |  |  |  |  |
| Guards, knife and hold-downs misaligned                                                                     | Straighten guards, align hold downs.                                              | 4.7.7 Guards, page 124<br>4.7.8 Hold-Downs, page 132                                                                                           |  |  |  |  |  |
| Symptom: Excessive heating of hydraulic of                                                                  | oil                                                                               |                                                                                                                                                |  |  |  |  |  |
| Relief pressure too low                                                                                     | Replace relief valve.                                                             | See Dealer                                                                                                                                     |  |  |  |  |  |
| Symptom: Header stalling in extremely tal                                                                   | l, heavy crop (6+ tons per acre)                                                  |                                                                                                                                                |  |  |  |  |  |
| Insufficient crop clearance at rear of feed pan                                                             | Lower rock drop tines (rear of header pan).                                       | 3.6.11 Setting Feed Pan and<br>Rock Drop Tine Position, page<br>80, or 3.6.9 Checking and<br>Adjusting Float – M Series<br>Windrowers, page 76 |  |  |  |  |  |
| Insufficient crop clearance at rear of feed pan                                                             | Remove rubber fingers from auger at delivery opening.                             | 4.11 Replacing Rubber Fingers,<br>page 164                                                                                                     |  |  |  |  |  |
| Insufficient crop clearance at rear of feed pan                                                             | Increase roll gap.                                                                | 3.6.12 Adjusting Conditioner Roll<br>Gap, page 81                                                                                              |  |  |  |  |  |
| Feeding aids for shorter, lighter crop impede flow of heavy or thick stemmed crops (cane, sudan grass etc.) | Remove front set of stripper bars.                                                | 4.12 Stripper Bar, page 165                                                                                                                    |  |  |  |  |  |
| Symptom: Header turns while unloaded b                                                                      | Symptom: Header turns while unloaded but slows or stops when starting to cut      |                                                                                                                                                |  |  |  |  |  |
| Low reservoir oil level                                                                                     | Add oil to reservoir.                                                             | 4.6.1 Servicing Header<br>Hydraulics, page 119                                                                                                 |  |  |  |  |  |
| Cold oil in system                                                                                          | Reduce ground speed until oil reaches operating temperature.                      | 3.10 Selecting Ground Speed,<br>page 96                                                                                                        |  |  |  |  |  |
| Defective motor                                                                                             | Repair motor.                                                                     | See Dealer                                                                                                                                     |  |  |  |  |  |
| Defective O-ring inside relief valve                                                                        | Replace relief valve.                                                             | See Dealer                                                                                                                                     |  |  |  |  |  |

| Problem                                                 | Solution                                                  | Section                                                                 |  |
|---------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|--|
| Defective pump                                          | Repair pump.                                              | See Dealer                                                              |  |
| Defective relief valve                                  | Repair relief valve.                                      | See Dealer                                                              |  |
| Symptom: Knocking in knife drive                        |                                                           |                                                                         |  |
| Worn needle bearing in knifehead                        | Replace                                                   | 4.7.4 Removing Knifehead<br>Bearing, page 123                           |  |
| Worn knifehead pin                                      | Replace                                                   | 4.7.3 Installing Knife, page 122                                        |  |
| Incorrect end guards                                    | Replace with special end guards.                          | 4.7.7 Guards, page 124                                                  |  |
| Symptom: Knife back breakage                            |                                                           |                                                                         |  |
| Dull knife                                              | Replace                                                   | 4.7.4 Removing Knifehead<br>Bearing, page 123                           |  |
| Worn knife head pin                                     | Replace                                                   | 4.7.3 Installing Knife, page 122                                        |  |
| Bent or broken guard                                    | Straighten or replace                                     | 4.7.7 Guards, page 124                                                  |  |
| Incorrect end guards at knifehead                       | Replace with correct number of special guards.            | 4.7.7 Guards, page 124                                                  |  |
| Symptom: Windrower side drift                           |                                                           |                                                                         |  |
| Header is dragging on one end and pulling to that side. | Adjust skid shoes to prevent cutterbar dragging.          | 3.6.8 Setting Cutting Height, page 75                                   |  |
| Header is dragging on one end and pulling to that side. | Adjust header float.                                      | 3.6.9 Checking and Adjusting<br>Float – M Series Windrowers,<br>page 76 |  |
| Symptom: Lights malfunctioning                          |                                                           |                                                                         |  |
| Improper ground                                         | Check for proper grounding between light base and header. | 4.16 Maintaining the Electrical<br>System, page 194                     |  |
| Burned out bulb                                         | Replace bulb.                                             | 4.16 Maintaining the Electrical<br>System, page 194                     |  |
| Poor connection                                         | Check connector at windrower.                             | -                                                                       |  |

# **Chapter 8: Reference**

## 8.1 Recommended Torques

## 8.1.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

#### Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by f=0.65.

#### Self-tapping screws

Standard torque is to be used (NOT to be used on critical or structurally important joints).

#### SAE Bolt Torque Specifications

Torque values shown in following tables are valid for non-greased, or non-oiled threads and heads; therefore, do **NOT** grease or oil bolts or cap screws unless otherwise specified in this manual.

Table 8.1 SAE Grade 5 Bolt and Grade 5 Free Spinning Nut

| Nominal  | Torque (Nm) |      | Torque (lbf | ·ft) (*lbf·in) |
|----------|-------------|------|-------------|----------------|
| Size (A) | Min.        | Max. | Min.        | Max.           |
| 1/4-20   | 11.9        | 13.2 | *106        | *117           |
| 5/16-18  | 24.6        | 27.1 | *218        | *241           |
| 3/8-16   | 44          | 48   | 32          | 36             |
| 7/16-14  | 70          | 77   | 52          | 57             |
| 1/2-13   | 106         | 118  | 79          | 87             |
| 9/16-12  | 153         | 170  | 114         | 126            |
| 5/8-11   | 212         | 234  | 157         | 173            |
| 3/4-10   | 380         | 420  | 281         | 311            |
| 7/8-9    | 606         | 669  | 449         | 496            |
| 1-8      | 825         | 912  | 611         | 676            |

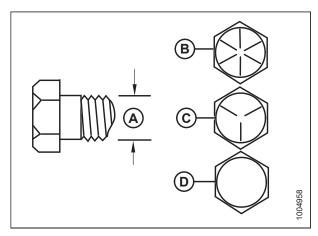



Figure 8.1: Bolt Grades
A - Nominal Size
B - SAE-8
C - SAE-5
D - SAE-2

#### **REFERENCE**

Table 8.2 SAE Grade 5 Bolt and Grade F Distorted Thread Nut

| Nominal  | Nominal Torque (Nm) |      | Torque (lbf | ·ft) (*lbf·in) |
|----------|---------------------|------|-------------|----------------|
| Size (A) | Min.                | Max. | Min.        | Max.           |
| 1/4-20   | 8.1                 | 9    | *72         | *80            |
| 5/16-18  | 16.7                | 18.5 | *149        | *164           |
| 3/8-16   | 30                  | 33   | 22          | 24             |
| 7/16-14  | 48                  | 53   | 35          | 39             |
| 1/2-13   | 73                  | 80   | 54          | 59             |
| 9/16-12  | 105                 | 116  | 77          | 86             |
| 5/8-11   | 144                 | 160  | 107         | 118            |
| 3/4-10   | 259                 | 286  | 192         | 212            |
| 7/8-9    | 413                 | 456  | 306         | 338            |
| 1-8      | 619                 | 684  | 459         | 507            |

Table 8.3 SAE Grade 8 Bolt and Grade G Distorted Thread Nut

| Nominal  | ominal Torque (Nm) |      | Torque (lbf | ·ft) (*lbf·in) |
|----------|--------------------|------|-------------|----------------|
| Size (A) | Min.               | Max. | Min.        | Max.           |
| 1/4-20   | 16.8               | 18.6 | *150        | *165           |
| 5/16-18  | 24                 | 26   | 18          | 19             |
| 3/8-16   | 42                 | 46   | 31          | 34             |
| 7/16-14  | 67                 | 74   | 50          | 55             |
| 1/2-13   | 102                | 113  | 76          | 84             |
| 9/16-12  | 148                | 163  | 109         | 121            |
| 5/8-11   | 204                | 225  | 151         | 167            |
| 3/4-10   | 362                | 400  | 268         | 296            |
| 7/8-9    | 583                | 644  | 432         | 477            |
| 1-8      | 874                | 966  | 647         | 716            |

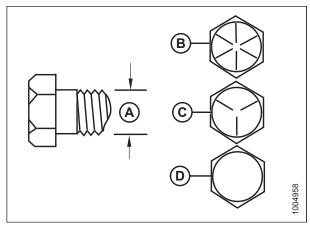



Figure 8.2: Bolt Grades

A - Nominal Size C - SAE-5 B - SAE-8

D - SAE-2

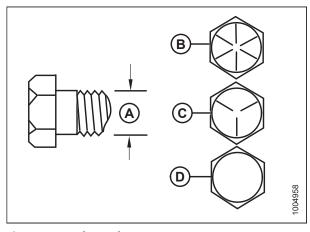



Figure 8.3: Bolt Grades

A - Nominal Size

B - SAE-8

C - SAE-5

D - SAE-2

Table 8.4 SAE Grade 8 Bolt and Grade 8 Free Spinning Nut

| Nominal  | Torque (Nm) |      | Torque (lbf | ·ft) (*lbf·in) |
|----------|-------------|------|-------------|----------------|
| Size (A) | Min.        | Max. | Min.        | Max.           |
| 1/4-20   | 16.8        | 18.6 | *150        | *165           |
| 5/16-18  | 35          | 38   | 26          | 28             |
| 3/8-16   | 61          | 68   | 46          | 50             |
| 7/16-14  | 98          | 109  | 73          | 81             |
| 1/2-13   | 150         | 166  | 111         | 123            |
| 9/16-12  | 217         | 239  | 160         | 177            |
| 5/8-11   | 299         | 330  | 221         | 345            |
| 3/4-10   | 531         | 587  | 393         | 435            |
| 7/8-9    | 855         | 945  | 633         | 700            |
| 1-8      | 1165        | 1288 | 863         | 954            |

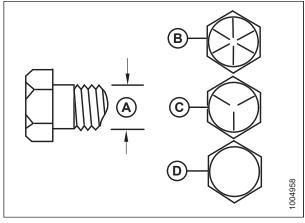



Figure 8.4: Bolt Grades

A - Nominal Size C - SAE-5 B - SAE-8 D - SAE-2

## Metric Bolt Specifications

Table 8.5 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

| Nominal  | Nominal Torque (Nm) |      | Torque (lbf | ·ft) (*lbf·in) |
|----------|---------------------|------|-------------|----------------|
| Size (A) | Min.                | Max. | Min.        | Max.           |
| 3-0.5    | 1.4                 | 1.6  | *13         | *14            |
| 3.5-0.6  | 2.2                 | 2.5  | *20         | *22            |
| 4-0.7    | 3.3                 | 3.7  | *29         | *32            |
| 5-0.8    | 6.7                 | 7.4  | *59         | *66            |
| 6-1.0    | 11.4                | 12.6 | *101        | *112           |
| 8-1.25   | 28                  | 30   | 20          | 23             |
| 10-1.5   | 55                  | 60   | 40          | 45             |
| 12-1.75  | 95                  | 105  | 70          | 78             |
| 14-2.0   | 152                 | 168  | 113         | 124            |
| 16-2.0   | 236                 | 261  | 175         | 193            |
| 20-2.5   | 460                 | 509  | 341         | 377            |
| 24-3.0   | 796                 | 879  | 589         | 651            |

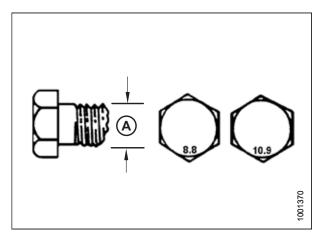
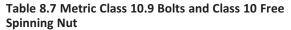




Figure 8.5: Bolt Grades

Table 8.6 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

| Nominal  | Torque (Nm) |      | Torque (lbf | ·ft) (*lbf·in) |
|----------|-------------|------|-------------|----------------|
| Size (A) | Min.        | Max. | Min.        | Max.           |
| 3-0.5    | 1           | 1.1  | *9          | *10            |
| 3.5-0.6  | 1.5         | 1.7  | *14         | *15            |
| 4-0.7    | 2.3         | 2.5  | *20         | *22            |
| 5-0.8    | 4.5         | 5    | *40         | *45            |
| 6-1.0    | 7.7         | 8.6  | *69         | *76            |
| 8-1.25   | 18.8        | 20.8 | *167        | *185           |
| 10-1.5   | 37          | 41   | 28          | 30             |
| 12-1.75  | 65          | 72   | 48          | 53             |
| 14-2.0   | 104         | 115  | 77          | 85             |
| 16-2.0   | 161         | 178  | 119         | 132            |
| 20-2.5   | 314         | 347  | 233         | 257            |
| 24-3.0   | 543         | 600  | 402         | 444            |



| Nominal  | Torque (Nm) |      | Torque (lbf·ft) (*lbf·in |      |
|----------|-------------|------|--------------------------|------|
| Size (A) | Min.        | Max. | Min.                     | Max. |
| 3-0.5    | 1.8         | 2    | *18                      | *19  |
| 3.5-0.6  | 2.8         | 3.1  | *27                      | *30  |
| 4-0.7    | 4.2         | 4.6  | *41                      | *45  |
| 5-0.8    | 8.4         | 9.3  | *82                      | *91  |
| 6-1.0    | 14.3        | 15.8 | *140                     | *154 |
| 8-1.25   | 38          | 42   | 28                       | 31   |
| 10-1.5   | 75          | 83   | 56                       | 62   |
| 12-1.75  | 132         | 145  | 97                       | 108  |
| 14-2.0   | 210         | 232  | 156                      | 172  |
| 16-2.0   | 326         | 360  | 242                      | 267  |
| 20-2.5   | 637         | 704  | 472                      | 521  |
| 24-3.0   | 1101        | 1217 | 815                      | 901  |

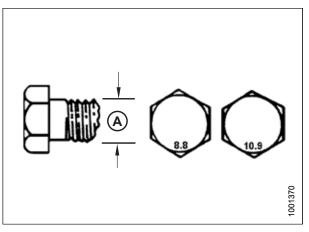



Figure 8.6: Bolt Grades

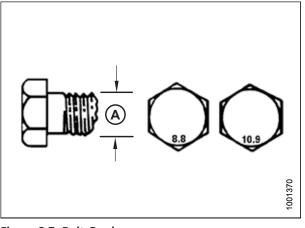



Figure 8.7: Bolt Grades

Table 8.8 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

| Nominal  | Torque (Nm) |      | Torque (lbf·ft) (*lbf·in) |      |
|----------|-------------|------|---------------------------|------|
| Size (A) | Min.        | Max. | Min.                      | Max. |
| 3-0.5    | 1.3         | 1.5  | *12                       | *13  |
| 3.5-0.6  | 2.1         | 2.3  | *19                       | *21  |
| 4-0.7    | 3.1         | 3.4  | *28                       | *31  |
| 5-0.8    | 6.3         | 7    | *56                       | *62  |
| 6-1.0    | 10.7        | 11.8 | *95                       | *105 |
| 8-1.25   | 26          | 29   | 19                        | 21   |
| 10-1.5   | 51          | 57   | 38                        | 42   |
| 12-1.75  | 90          | 99   | 66                        | 73   |
| 14-2.0   | 143         | 158  | 106                       | 117  |
| 16-2.0   | 222         | 246  | 165                       | 182  |
| 20-2.5   | 434         | 480  | 322                       | 356  |
| 24-3.0   | 750         | 829  | 556                       | 614  |

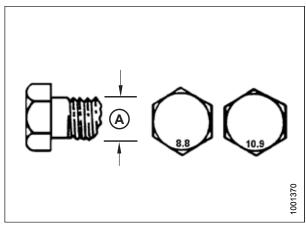



Figure 8.8: Bolt Grades

## Metric Bolt Specifications Bolting into Cast Aluminum

**Table 8.9 Metric Bolt Bolting into Cast Aluminum** 

|                     | Bolt Torque            |        |                 |                |
|---------------------|------------------------|--------|-----------------|----------------|
| Nominal<br>Size (A) | 8.8<br>(Cast Aluminum) |        | 10<br>(Cast Alu | ).9<br>ıminum) |
|                     | Nm                     | lbf∙ft | Nm              | lbf∙ft         |
| M3                  | 1                      | 1      | 1               | 1              |
| M4                  | ı                      | 1      | 4               | 2.6            |
| M5                  | 1                      | 1      | 8               | 5.5            |
| M6                  | 9                      | 6      | 12              | 9              |
| M8                  | 20                     | 14     | 28              | 20             |
| M10                 | 40                     | 28     | 55              | 40             |
| M12                 | 70                     | 52     | 100             | 73             |
| M14                 | -                      | _      | _               | _              |
| M16                 | _                      | _      | _               | _              |

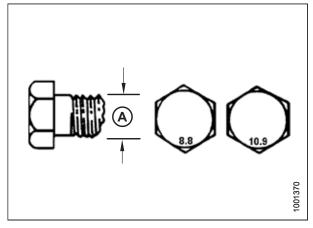



Figure 8.9: Bolt Grades

### Flare-Type Hydraulic Fittings

- 1. Check flare (A) and flare seat (B) for defects that might cause leakage.
- 2. Align tube (C) with fitting (D) and thread nut (E) onto fitting without lubrication until contact has been made between flared surfaces.
- 3. Torque fitting nut (E) to specified number of flats from finger tight (FFFT) or to a given torque value in Table 8.10, page 210.
- 4. Use two wrenches to prevent fitting (D) from rotating. Place one wrench on fitting body (D), and tighten nut (E) with other wrench to torque shown.
- 5. Assess final condition of connection.

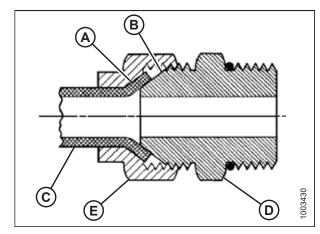



Figure 8.10: Hydraulic Fitting

#### **Table 8.10 Flare-Type Hydraulic Tube Fittings**

|               |                   | Torque  | Value <sup>5</sup> | Flats from Finger Tight (FFFT) |                       |
|---------------|-------------------|---------|--------------------|--------------------------------|-----------------------|
| SAE Dash Size | Thread Size (in.) | Nm      | lbf∙ft             | Tube                           | Swivel Nut or<br>Hose |
| -2            | 5/16–24           | 4–5     | 3–4                |                                | _                     |
| -3            | 3/8–24            | 7–8     | 5–6                |                                | _                     |
| -4            | 7/16–20           | 18–19   | 13–14              | 2 1/2                          | 2                     |
| -5            | 1/2-20            | 19–21   | 14–15              | 2                              | 2                     |
| -6            | 9/16–18           | 30–33   | 22–24              | 2                              | 1 1/2                 |
| -8            | 3/4–16            | 57–63   | 42–46              | 2                              | 1 1/2                 |
| -10           | 7/8–14            | 81–89   | 60–66              | 1 1/2                          | 1 1/2                 |
| -12           | 1 1/16–12         | 113–124 | 83–91              | 1 1/2                          | 1 1/4                 |
| -14           | 1 3/16–12         | 136–149 | 100–110            | 1 1/2                          | 1 1/4                 |
| -16           | 1 5/16–12         | 160–176 | 118–130            | 1 1/2                          | 1                     |
| -20           | 1 5/8–12          | 228–250 | 168–184            | 1                              | 1                     |
| -24           | 1 7/8–12          | 264–291 | 195–215            | 1                              | 1                     |
| -32           | 2 1/2–12          | 359–395 | 265–291            | 1                              | 1                     |
| -40           | 3–12              | _       | _                  | 1                              | 1                     |

215345 210 Revision A

<sup>5.</sup> Torque values shown are based on lubricated connections as in reassembly.

#### O-Ring Boss Hydraulic Fittings – Adjustable

- 1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
- 2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.
- 3. Check that O-ring (A) is **NOT** on threads and adjust if necessary.
- 4. Apply hydraulic system oil to O-ring (A).

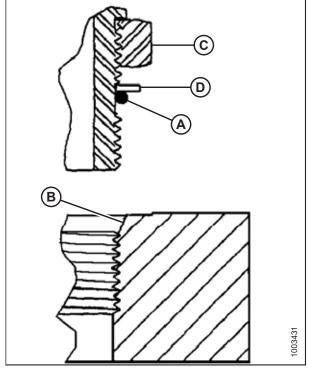



Figure 8.11: Hydraulic Fitting

- 5. Install fitting (B) into port until backup washer (D) and O-ring (A) contact part face (E).
- 6. Position angle fittings by unscrewing no more than one turn.
- 7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).
- 8. Check final condition of fitting.

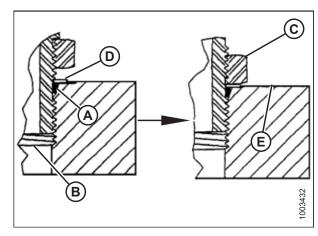



Figure 8.12: Hydraulic Fitting

#### REFERENCE

Table 8.11 O-Ring Boss (ORB) Hydraulic Fittings – Adjustable

| CAE Dealt Class | Through Circ. (in ) | Torque  | Value <sup>6</sup> |
|-----------------|---------------------|---------|--------------------|
| SAE Dash Size   | Thread Size (in.)   | Nm      | lbf·ft (*lbf·in)   |
| -2              | 5/16–24             | 6–7     | *53–62             |
| -3              | 3/8–24              | 12–13   | *106–115           |
| -4              | 7/16–20             | 19–21   | 14–15              |
| -5              | 1/2–20              | 21–33   | 15–24              |
| -6              | 9/16–18             | 26–29   | 19–21              |
| -8              | 3/4–16              | 46–50   | 34–37              |
| -10             | 7/8–14              | 75–82   | 55–60              |
| -12             | 1 1/16–12           | 120–132 | 88–97              |
| -14             | 1 3/8–12            | 153–168 | 113–124            |
| -16             | 1 5/16–12           | 176–193 | 130–142            |
| -20             | 1 5/8–12            | 221–243 | 163–179            |
| -24             | 1 7/8–12            | 270–298 | 199–220            |
| -32             | 2 1/2–12            | 332–365 | 245–269            |

215345 212 Revision A

<sup>6.</sup> Torque values shown are based on lubricated connections as in reassembly.

### O-Ring Boss Hydraulic Fittings – Non-Adjustable

- 1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
- 2. Check that O-ring (A) is **NOT** on threads and adjust if necessary.
- 3. Apply hydraulic system oil to O-ring.
- 4. Install fitting (C) into port until fitting is hand-tight.
- 5. Torque fitting (C) according to values in Table 8.12, page 213.
- 6. Check final condition of fitting.

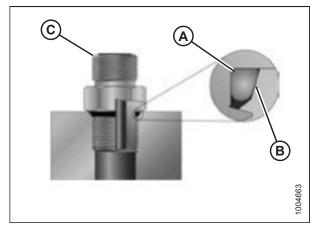



Figure 8.13: Hydraulic Fitting

Table 8.12 O-Ring Boss (ORB) Hydraulic Fittings – Non-Adjustable

| CAE Dook Sine | Thursd Circ (in ) | Torque  | Value <sup>7</sup> |
|---------------|-------------------|---------|--------------------|
| SAE Dash Size | Thread Size (in.) | Nm      | lbf·ft (*lbf·in)   |
| -2            | 5/16–24           | 6–7     | *53–62             |
| -3            | 3/8–24            | 12–13   | *106–115           |
| -4            | 7/16–20           | 19–21   | 14–15              |
| -5            | 1/2-20            | 21–33   | 15–24              |
| -6            | 9/16–18           | 26–29   | 19–21              |
| -8            | 3/4–16            | 46–50   | 34–37              |
| -10           | 7/8–14            | 75–82   | 55–60              |
| -12           | 1 1/16–12         | 120–132 | 88–97              |
| -14           | 1 3/8–12          | 153–168 | 113–124            |
| -16           | 1 5/16–12         | 176–193 | 130–142            |
| -20           | 1 5/8–12          | 221–243 | 163–179            |
| -24           | 1 7/8–12          | 270–298 | 199–220            |
| -32           | 2 1/2–12          | 332–365 | 245–269            |

215345 213 Revision A

<sup>7.</sup> Torque values shown are based on lubricated connections as in reassembly.

### O-Ring Face Seal Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

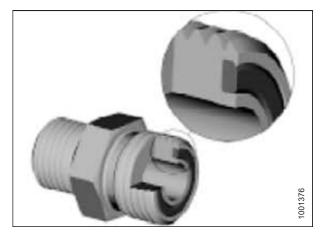



Figure 8.14: Hydraulic Fitting

- Apply hydraulic system oil to O-ring (B). 2.
- Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).
- Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.
- Torque fittings according to values in Table 8.13, page 214.

#### NOTE:

If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

- 6. Use three wrenches when assembling unions or joining two hoses together.

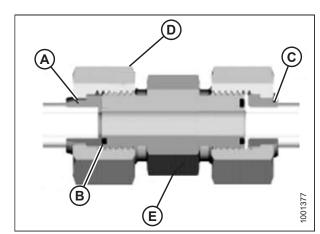



Figure 8.15: Hydraulic Fitting

7. Check final condition of fitting.

Table 8.13 O-Ring Face Seal (ORFS) Hydraulic Fittings

| SAE Dash Size | Thread Sine (in ) | Tubo O.D. (in.) | Torque Value <sup>8</sup> |        |
|---------------|-------------------|-----------------|---------------------------|--------|
| SAE Dash Size | Thread Size (in.) | Tube O.D. (in.) | Nm                        | lbf∙ft |
| -3            | Note <sup>9</sup> | 3/16            | _                         | _      |
| -4            | 9/16              | 1/4             | 25–28                     | 18–21  |
| -5            | Note <sup>9</sup> | 5/16            | _                         | _      |
| -6            | 11/16             | 3/8             | 40–44                     | 29–32  |
| -8            | 13/16             | 1/2             | 55–61                     | 41–45  |
| -10           | 1                 | 5/8             | 80–88                     | 59–65  |
| -12           | 1 3/16            | 3/4             | 115–127                   | 85–94  |
| -14           | Note <sup>9</sup> | 7/8             | _                         | _      |

<sup>8.</sup> Torque values and angles shown are based on lubricated connection as in reassembly.

<sup>9.</sup> O-ring face seal type end not defined for this tube size.

Table 8.13 O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

| CAE Dook Sine | re Thread Size (in.) Tub | Tubo O D (in )  | Torque Value <sup>10</sup> |         |  |
|---------------|--------------------------|-----------------|----------------------------|---------|--|
| SAE Dash Size |                          | Tube O.D. (in.) | Nm                         | lbf∙ft  |  |
| -16           | 1 7/16                   | 1               | 150–165                    | 111–122 |  |
| -20           | 1 11/16                  | 1 1/4           | 205–226                    | 151–167 |  |
| -24           | 1–2                      | 1 1/2           | 315–347                    | 232–256 |  |
| -32           | 2 1/2                    | 2               | 510–561                    | 376–414 |  |

### Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

- 1. Check components to ensure that fitting and port threads are free of burrs, nicks, scratches, or any form of contamination.
- 2. Apply pipe thread sealant (paste type) to external pipe threads.
- 3. Thread fitting into port until hand-tight.
- 4. Torque connector to appropriate torque angle. The turns from finger tight (TFFT) and flats from finger tight (FFFT) values are shown in Table 8.14, page 215. Make sure that tube end of a shaped connector (typically 45° or 90°) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.
- 5. Clean all residue and any excess thread conditioner with appropriate cleaner.
- 6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.
- 7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

#### NOTE:

Overtorque failure of fittings may not be evident until fittings are disassembled.

**Table 8.14 Hydraulic Fitting Pipe Thread** 

| Tapered Pipe Thread Size | Recommended TFFT | Recommended FFFT |
|--------------------------|------------------|------------------|
| 1/8–27                   | 2–3              | 12–18            |
| 1/4–18                   | 2–3              | 12–18            |
| 3/8–18                   | 2–3              | 12–18            |
| 1/2–14                   | 2–3              | 12–18            |
| 3/4–14                   | 1.5–2.5          | 12–18            |
| 1–11 1/2                 | 1.5–2.5          | 9–15             |
| 1 1/4–11 1/2             | 1.5–2.5          | 9–15             |
| 1 1/2–11 1/2             | 1.5–2.5          | 9–15             |
| 2–11 1/2                 | 1.5–2.5          | 9–15             |

<sup>10.</sup> Torque values and angles shown are based on lubricated connection as in reassembly.

#### REFERENCE

## 8.2 Conversion Chart

**Table 8.15 Conversion Chart** 

| Quantity    | SI Units (Metric)   |              | Factor            | US Customary Unit           | <b>US Customary Units (Standard)</b> |  |
|-------------|---------------------|--------------|-------------------|-----------------------------|--------------------------------------|--|
|             | Unit Name           | Abbreviation |                   | Unit Name                   | Abbreviation                         |  |
| Area        | hectare             | ha           | x 2.4710 =        | acre                        | acres                                |  |
| Flow        | liters per minute   | L/min        | x 0.2642 =        | US gallons per minute       | gpm                                  |  |
| Force       | Newton              | N            | x 0.2248 =        | pound force                 | lbf                                  |  |
| Length      | millimeter          | mm           | x 0.0394 =        | inch                        | in.                                  |  |
| Length      | meter               | m            | x 3.2808 =        | foot                        | ft.                                  |  |
| Power       | kilowatt            | kW           | x 1.341 =         | horsepower                  | hp                                   |  |
| Pressure    | kilopascal          | kPa          | x 0.145 =         | pounds per square inch      | psi                                  |  |
| Pressure    | megapascal          | MPa          | x 145.038 =       | pounds per square inch      | psi                                  |  |
| Pressure    | bar (Non-SI)        | bar          | x 14.5038 =       | pounds per square inch      | psi                                  |  |
| Torque      | Newton meter        | Nm           | x 0.7376 =        | pound feet or foot pounds   | lbf·ft                               |  |
| Torque      | Newton meter        | Nm           | x 8.8507 =        | pound inches or inch pounds | lbf∙in                               |  |
| Temperature | degrees Celsius     | °C           | (°C x 1.8) + 32 = | degrees Fahrenheit          | °F                                   |  |
| Velocity    | meters per minute   | m/min        | x 3.2808 =        | feet per minute             | ft/min                               |  |
| Velocity    | meters per second   | m/s          | x 3.2808 =        | feet per second             | ft/s                                 |  |
| Velocity    | kilometers per hour | km/h         | x 0.6214 =        | miles per hour              | mph                                  |  |
| Volume      | liter               | L            | x 0.2642 =        | US gallon                   | US gal                               |  |
| Volume      | milliliter          | mL           | x 0.0338 =        | ounce                       | OZ.                                  |  |
| Volume      | cubic centimeter    | cm³ or cc    | x 0.061 =         | cubic inch                  | in. <sup>3</sup>                     |  |
| Weight      | kilogram            | kg           | x 2.2046 =        | pound                       | lb.                                  |  |

# Index

| A                                             | removing left side                      |
|-----------------------------------------------|-----------------------------------------|
| A40D                                          | bolts                                   |
| auger drive                                   | definition                              |
| A40DX                                         | break-in inspections                    |
| auger drive 149                               |                                         |
| API                                           | С                                       |
| definition                                    |                                         |
| ASTM                                          | center-links                            |
| definition19                                  | definition                              |
| attaching/detaching                           | CGVW                                    |
| A40D auger header                             | definition                              |
| modifications needed to attach header31       | clearances                              |
| A40D SP windrower header                      | auger to stripper bar clearance 67, 165 |
| attaching to M20549                           | hold-down to knife section – DK 133     |
| attaching to windrower                        | reel tine to header pan clearance       |
| hydraulic hose routing – M100, M105, M205     | conditioners 168                        |
| only55                                        | conditioning                            |
| M100 or M10531                                | conditioner rolls                       |
| M150, M155, or M155E4 37                      | adjusting conditioner roll gap81        |
| M20043                                        | adjusting conditioner roll tension 82   |
| A40D windrower header                         | roll alignment                          |
| detaching A40D from windrower61               | checking/adjusting185                   |
| A40DX auger header                            | roll timing                             |
| detaching from M1 Series windrower            | checking/adjusting                      |
| A40DX SP windrower header                     | forming shield, See forming shields     |
| attaching to M1 Series windrower              | hydraulic motor, See hydraulic motors   |
| auger and auger drives                        | conversion chart                        |
| auger pan                                     | cutting heights                         |
| auger pan extensions for grass seed special92 | setting75                               |
| adjusting extensions93                        |                                         |
| straightening auger pan                       | D                                       |
| grass seed special auger design91             | D                                       |
| replacing rubber fingers                      | DDD                                     |
| stripper bar                                  | definition                              |
| installing front stripper bar extensions      | declaration of conformityi              |
| removing stripper bar                         | definition of terms                     |
| replacing stripper bar                        | deflectors                              |
| auger headers                                 | forming shield                          |
| detaching                                     | assembling 173                          |
| A40DX from M1 Series windrower                | disassembling                           |
| auger positions                               | installing 175                          |
| adjusting                                     | SP windrower headers                    |
| auger fore-aft position                       | removing shield                         |
| auger speeds                                  | rear deflector (fluffer shield)         |
| adjusting67                                   | positioning rear deflector84            |
| uajusting0/                                   | side deflectors                         |
|                                               | positioning side deflectors83           |
| В                                             | dividers, See tall crop dividers        |
|                                               | DK                                      |
| bearings                                      | definition                              |
| belts, See knife drive belts                  | DKD                                     |
| knife drive belt 142                          | definition19                            |

| drive systems                         | glossary                                     | 19  |
|---------------------------------------|----------------------------------------------|-----|
| A40D                                  | grass seed special                           |     |
| A40DX142                              | auger pan extensions                         |     |
| drives                                | adjusting extensions                         |     |
| knife drive, See knife drives         | seven-bat reel (standard)                    |     |
| driveshields                          | special auger design                         |     |
| opening and closing 104               | stub guards and hold-downs                   |     |
| drying agents                         | windrow forming rods                         |     |
| arying agents                         | ground speed                                 |     |
|                                       | guards                                       |     |
| E                                     | aligning guard                               | 121 |
|                                       | description                                  |     |
| electrical                            | grass seed special, <i>See</i> guards        | 124 |
| maintaining the electrical system 194 |                                              |     |
| endshields                            | pointed guards                               | 122 |
| opening and closing endshields 107    | adjusting hold-down – DK                     |     |
| engine-forward                        | replacing pointed center guard – DK          |     |
| definition19                          | replacing pointed guard                      |     |
|                                       | stub guard conversion kit                    | 196 |
|                                       | stub guards                                  |     |
| F                                     | adjusting center hold-down – DK              |     |
|                                       | replacing center stub guard – DK             | 130 |
| feed pans                             | GVW                                          |     |
| adjusting position80                  | definition                                   | 19  |
| FFFT                                  |                                              |     |
| definition19                          |                                              |     |
| finger tight                          | Н                                            |     |
| definition19                          | hay conditioners, See conditioning           |     |
| float, See header float               | roll timing                                  | 10  |
| fluffer shields, See deflectors       | <u> </u>                                     |     |
| fluids and lubricants                 | haying tips                                  |     |
| forming rods                          | chemical drying agents                       |     |
| grass seed special94                  | curing                                       |     |
| forming shields 83                    | driving on windrows                          |     |
| assembling forming shield 173         | raking and tedding                           |     |
| disassembling forming shield          | topsoil moisture                             |     |
| installing forming shield             | weather and topography                       |     |
| positioning side forming shields83    | windrow characteristics                      | 100 |
| SP windrower headers                  | header angles                                |     |
| removing forming shield 170           | adjusting                                    | 75  |
|                                       | header float                                 |     |
|                                       | adjusting for M Series                       |     |
| G                                     | adjusting for M1 Series                      |     |
|                                       | checking float                               |     |
| gauge rollers                         | float operating guidelines                   |     |
| installing 192                        | removing and restoring float                 | 79  |
| kit 195                               | setting float                                | 78  |
| removing                              | header operation                             |     |
| setting cutting height75              | header float                                 |     |
| gearboxes                             | float operating guidelines                   | 78  |
| A40D conditioner drive gearbox        | headers                                      |     |
| installing 181                        | header specifications                        | 2   |
| removing 179                          | hex keys                                     |     |
| A40DX conditioner drive gearbox       | definition                                   | 19  |
| installing 181                        | hold-downs                                   |     |
| removing                              | adjusting on header with pointed guards – DK | 132 |
| changing conditioner gearbox oil      | headerheader with pointed guards – DK        | 100 |
| Bear 20/ Oil 100                      | ileauei                                      | 133 |

| adjusting on header with stub guards      | removing right timing belt           |
|-------------------------------------------|--------------------------------------|
| center hold-down – DK header              | knife drive boxes                    |
| grass seed special91                      | changing oil                         |
| hoses                                     | installing knife drive box           |
| checking for leaks                        | installing pulley                    |
| hydraulic drive hoses                     | mounting bolts                       |
| routing for M1 Series only                | removing knife drive box             |
| routing for M100, M105, M205 only55       | removing pulley                      |
| reverser valve jumper hose                | knife drives                         |
| routing on M150, M155, M155E4, M200       | knives                               |
| hydraulic motors                          | knife guards, <i>See</i> guards      |
| installing hydraulic motor on gearbox     | knives                               |
| removing hydraulic motor from gearbox 177 | installing knife                     |
| hydraulics                                | knifehead bearings                   |
| checking for leaks                        | installing                           |
| fittings                                  | removing knife                       |
| flare-type                                |                                      |
| O-ring boss (ORB) adjustable              | L                                    |
| O-ring boss (ORB) non-adjustable          | L                                    |
| O-ring face seal (ORFS)                   | lean bar position 67                 |
| tapered pipe thread fittings              | lights                               |
| hydraulic safety                          | replacing light bulbs                |
| servicing hydraulics                      | lock-out valves                      |
|                                           | lift cylinder lock-out valves65      |
| I                                         | lubrication                          |
| ı                                         | lubrication points                   |
| introduction                              | drivelines 116                       |
| declaration of conformityi                | hay conditioner 115                  |
|                                           | windrower header 113                 |
|                                           | recommended fluids and lubricants    |
| K                                         |                                      |
| knife and knife drives                    | M                                    |
| cutterbar 120                             |                                      |
| stub guards and hold-downs91              | M100/M105 SP windrowers              |
| knife                                     | attaching A40D header31              |
| adjusting knife timing – DK header 139    | M150, M155, and M155E4 SP windrowers |
| removing spare knife from storage 124     | attaching A40D header37              |
| replacing knife section                   | M200 SP windrowers                   |
| knife drive                               | attaching A40D header43              |
| windrower header 142                      | M205 SP windrowers                   |
| knife guards, <i>See</i> guards           | attaching A40D header49              |
| knifehead bearing                         | maintenance and servicing            |
| removing 123                              | See also maintenance                 |
| unplugging conditioner and knife89        | break-in inspection                  |
| knife drive belts                         | greasing procedure                   |
| windrower header                          | maintenance record                   |
| adjusting left timing belt tension 143    | maintenance requirements 108         |
| adjusting right timing belt tension       | preparing for servicing 103          |
| installing left double V-belts 143        | preseason checks                     |
| installing left timing belt145            | safety5                              |
| installing right timing belt148           | mechanical troubleshooting 203       |
| left side                                 | metric bolts                         |
| adjusting v-belt tension 142              | torque specifications                |
| removing left double V-belts142           | model numbersix                      |
|                                           |                                      |

| moisture                                   | P                                        |     |
|--------------------------------------------|------------------------------------------|-----|
| motors                                     | pointed guards, See guards               |     |
| hydraulic motor                            | power take-off (PTO)                     |     |
| installing on gearbox 178                  | PTO speed                                | iv  |
| removing from gearbox 177                  | preseason checks                         |     |
|                                            | •                                        | 110 |
|                                            | pulleys                                  | 120 |
| N                                          | installingremoving                       |     |
| NPT                                        | removing                                 | 13  |
| definition                                 |                                          |     |
| delilition                                 | R                                        |     |
|                                            | IX                                       |     |
| 0                                          | raking                                   | 101 |
| •                                          | reel and reel drives                     |     |
| operating windrower header 25              | replacement reel bat kit                 | 196 |
| recommended operating settings85           | seven-bat reel                           |     |
| variables affecting performance            | standard on grass seed special           | 92  |
| auger fore-aft position68                  | windrower header                         |     |
| auger position 67                          | reel drive                               | 149 |
| auger speed 67                             | reel positions                           |     |
| auger vertical position69                  | adjusting                                |     |
| conditioner roll alignment 185             | reel position                            | 70  |
| conditioner roll gap81                     | reel fore-aft position                   | 70  |
| conditioner roll tension82                 | reel tine to header pan clearance        | 73  |
| conditioner roll timing                    | reel vertical position                   | 71  |
| cutting height75                           | reel speeds                              |     |
| feed pan and rock drop tine position80     | adjusting                                | 67  |
| float                                      | reel tines and tine bar bearings         |     |
| M Series76                                 | A40D SP windrower header                 |     |
| M1 Series77                                | replacing – disc #2                      | 158 |
| forming shield position 83                 | replacing opposite cam – section Y       | 160 |
| ground speed96                             | replacing tine bar extension – section Z | 162 |
| header angles75                            | A40DX SP windrower header                |     |
| lean bar 67                                | replacing center section X               | 158 |
| rear deflector position 84                 | replacing opposite cam – section Y       | 160 |
| reel fore-aft position70                   | replacing tine bar extension – section Z | 162 |
| reel position70                            | adjusting reel tine aggressiveness       | 74  |
| reel speed 67                              | windrower header                         | 150 |
| reel tine to header pan clearance73        |                                          |     |
| reel vertical position71                   | replacing – disc #2                      | 154 |
| side deflector position 83                 | replacing cam end – disc #1              | 150 |
| tall crop dividers, See tall crop dividers | reference                                |     |
| tine aggressiveness74                      | •                                        |     |
| options                                    | maintenance requirements                 | 108 |
| additional gauge roller 195                |                                          |     |
| additional skid shoes                      | ·                                        | 205 |
| replacement reel bat kits                  |                                          |     |
| stub guard conversion kit 196              |                                          | 54  |
| tall crop divider kit 196                  |                                          |     |
| ORB                                        | adjusting position                       | 80  |
| definition                                 |                                          |     |
| owner/operator responsibilities 17         |                                          |     |
|                                            | roll alignment                           |     |
|                                            | roll gap                                 |     |
|                                            | roll tension                             | 82  |

| roll timing                              | I                                                                               |     |
|------------------------------------------|---------------------------------------------------------------------------------|-----|
| rpm                                      | tall crop dividers                                                              | 97  |
| definition19                             | adjusting dividers                                                              |     |
| rubber fingers                           | removing dividers                                                               |     |
|                                          | tall crop divider kit                                                           |     |
| 0                                        | tedding                                                                         |     |
| S                                        | TFFT                                                                            | 101 |
| SAE                                      | definition                                                                      | 10  |
| bolt torques                             | topography                                                                      |     |
| definition                               | torque                                                                          | 100 |
| safety                                   | definition                                                                      | 10  |
| general safety3                          | torque angles                                                                   | 13  |
| hydraulic safety6                        | definition                                                                      | 10  |
| maintenance safety5                      | torque specifications                                                           |     |
| operational                              | flare-type hydraulic fittings                                                   |     |
| owner/operator responsibilities          | metric bolt specifications                                                      |     |
| safety alert symbols1                    |                                                                                 |     |
| safety sign decals                       | bolting into cast aluminum<br>O-ring boss (ORB) hydraulic fittings – adjustable |     |
| installing decals                        |                                                                                 | 211 |
| interpreting decals                      | O-ring boss (ORB) hydraulic fittings – non-                                     | 212 |
| SP windrower headers8                    | adjustable                                                                      |     |
| signal words2                            | O-ring face seal (ORFS) fittings                                                |     |
| _                                        | SAE bolt torque specifications                                                  |     |
| screws definition                        | tapered pipe thread fittings                                                    | 215 |
|                                          | torque-tension                                                                  | 4.0 |
| SDD 10                                   | definition                                                                      |     |
| definition                               | troubleshooting                                                                 |     |
| sealed bearings                          | header performance                                                              |     |
| installing                               | mechanical issues                                                               | 203 |
| self-propelled windrowers                | trucks                                                                          | 4.0 |
| definition                               | definition                                                                      | 19  |
| serial numbersix                         |                                                                                 |     |
| servicing, See maintenance and servicing | U                                                                               |     |
| seven-bat reels                          | U                                                                               |     |
| standard on grass seed special           | unloading and assembly instructions                                             | 197 |
| sickles, See knife and knife drives      | unplugging conditioner and knife                                                |     |
| side deflectors                          |                                                                                 |     |
| positioning side forming shields83       |                                                                                 |     |
| SK 10                                    | W                                                                               |     |
| definition19                             |                                                                                 |     |
| skid shoes                               | washers                                                                         | 1.0 |
| additional skid shoes (optional)         | definition                                                                      |     |
| replacing skid shoe wear plate           | weather                                                                         | 100 |
| setting cutting height75                 | windrower headers                                                               |     |
| soft joints                              | attaching                                                                       | 24  |
| definition                               | A40D to M Series SP windrower                                                   |     |
| specifications                           | A40DX to M1 Series windrower                                                    | 25  |
| fluids and lubricants                    | detaching                                                                       |     |
| header                                   | A40D from M Series windrower                                                    |     |
| torque specifications                    | grass seed special                                                              |     |
| storage                                  | auger pan extensions                                                            |     |
| stripper bars                            | adjusting extensions                                                            |     |
| description                              | seven-bat reel (standard)                                                       |     |
| installing front extensions              | special auger design                                                            |     |
| removing stripper bar                    | stub guards and hold-downs                                                      |     |
| replacing stripper bar165                | windrow forming rods                                                            | 94  |

| hydraulic hose routing              |     |
|-------------------------------------|-----|
| for M1 Series only                  | 25  |
| for M100, M105, M205 only           | 55  |
| troubleshooting mechanical issues   | 203 |
| troubleshooting performance issues  | 199 |
| unplugging conditioner and knife    | 89  |
| windrow forming rods                | 94  |
| windrowers                          |     |
| definition                          | 19  |
| windrows                            |     |
| driving on windrows                 | 101 |
| windrow characteristics             | 100 |
| wobble boxes, See knife drive boxes |     |

# **Recommended Fluids and Lubricants**

Your machine can operate at top efficiency **ONLY** if clean lubricants are used.

- Use clean containers to handle all lubricants.
- Store in an area protected from dust, moisture, and other contaminants.

| Lubricant      | Specification         | Description                                                                                                         | Use                                     | Capacities              |
|----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|
| Grease         | SAE Multi-<br>Purpose | High temperature extreme pressure (EP2) performance with 1% max molybdenum disulphide (NLGI Grade 2). Lithium base. | As required unless otherwise specified  | _                       |
| Grease         | SAE Multi-<br>Purpose | High temperature extreme pressure (EP) performance with 10% max molybdenum disulphide (NLGI Grade 2). Lithium base. | Driveline slip-joints                   |                         |
| Gear lubricant | SAE 85W-140           | API service class GL-5                                                                                              | Knife drive box                         | 2.2 liters (2.3 US qts) |
| Gear lubricant | SAE 85W-140           | API service class GL-5                                                                                              | Conditioner drive gearbox               | 1 liter (1.06 US qts)   |
| Hydraulic oil  | SAE 15W-40            | Compliant with SAE specs for API class SJ And CH-4 engine oil.                                                      | Lift and header drive systems reservoir | 126 liters (33 US gal)  |



#### MacDon Industries Ltd.

680 Moray Street Winnipeg, Manitoba Canada R3J 3S3 t. (204) 885-5590 f. (204) 832-7749

#### MacDon, Inc.

10708 N. Pomona Avenue Kansas City, Missouri United States 64153-1924 t. (816) 891-7313 f. (816) 891-7323

#### MacDon Australia Pty. Ltd.

A.C.N. 079 393 721 P.O. Box 103 Somerton, Victoria, Australia Australia 3061 t.+61 3 8301 1911 f.+61 3 8301 1912

#### MacDon Brasil Agribusiness Ltda.

Rua Grã Nicco, 113, sala 404, B. 04 Mossunguê, Curitiba, Paraná CEP 81200-200 Brasil t. +55 (41) 2101-1713 f. +55 (41) 2101-1699

#### LLC MacDon Russia Ltd.

123317 Moscow, Russia 10 Presnenskaya nab, Block C Floor 5, Office No. 534, Regus Business Centre t. +7 495 775 6971 f. +7 495 967 7600

#### MacDon Europe GmbH

Hagenauer Strasse 59 65203 Wiesbaden Germany

CUSTOMERS **MacDon.com** 

DEALERS

Portal.MacDon.com

Trademarks of products are the marks of their respective manufacturers and/or distributors.

Printed in Canada