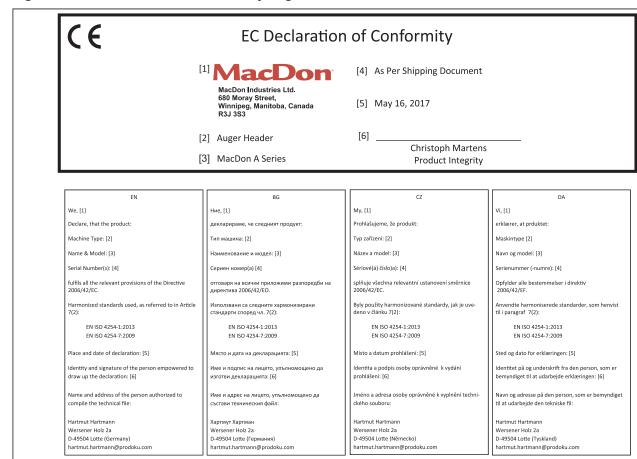


A40-D and A40-DX Self-Propelled Windrower Auger Header

Operator's Manual 214254 Revision A

> 2018 Model Year Original Instruction


MacDon A40-D Self-Propelled Auger Header

Published: June 2017

EC Declaration of Conformity

Figure 1. EC Declaration of Conformity Page 1

DE	ES	ET	FR
Wir, [1]	Nosotros [1]	Meie, [1]	Nous soussignés, [1]
Erklären hiermit, dass das Produkt:	declaramos que el producto:	deklareerime, et toode	Déclarons que le produit :
Maschinentyp: [2]	Tipo de máquina: [2]	Seadme tüüp: [2]	Type de machine : [2]
Name & Modell: [3]	Nombre y modelo: [3]	Nimi ja mudel: [3]	Nom et modèle : [3]
Seriennummer (n): [4]	Números de serie: [4]	Seerianumbrid: [4]	Numéro(s) de série : [4]
alle relevanten Vorschriften der Richtlinie 2006/42/EG erfüllt.	cumple con todas las disposiciones pertinentes de la directriz 2006/42/EC.	vastab kõigile direktiivi 2006/42/EÜ asjakohastele sätetele.	Est conforme à toutes les dispositions pertinentes de la directive 2006/42/EC.
Harmonisierte Standards wurden, wie in folgenden Artikeln angegeben, verwendet 7(2):	Se utilizaron normas armonizadas, según lo dispuesto en el artículo 7(2):	Kasutatud on järgnevaid harmoniseeritud stand- ardeid, millele on viidatud ka punktis 7(2):	Utilisation des normes harmonisées, comme indiqué dans l'Article 7(2):
EN ISO 4254-1:2013 EN ISO 4254-7:2009	EN ISO 4254-1:2013 EN ISO 4254-7:2009	EN ISO 4254-1:2013 EN ISO 4254-7:2009	EN ISO 4254-1:2013 EN ISO 4254-7:2009
Ort und Datum der Erklärung: [5]	Lugar y fecha de la declaración: [5]	Deklaratsiooni koht ja kuupäev: [5]	Lieu et date de la déclaration : [5]
Name und Unterschrift der Person, die dazu befugt ist, die Erklärung auszustellen: [6]	Identidad y firma de la persona facultada para draw redactar la declaración: [6]	Deklaratsiooni koostamiseks volitatud isiku nimi ja allkiri: [6]	Identité et signature de la personne ayant reçu le pouvoir de rédiger cette déclaration : [6]
Name und Anschrift der Person, die dazu berechtigt ist, die technischen Unterlagen zu erstellen:	Nombre y dirección de la persona autorizada para elaborar el expediente técnico:	Tehnilise dokumendi koostamiseks volitatud isiku nimi ja aadress:	Nom et adresse de la personne autorisée à consti- tuer le dossier technique :
Hartmut Hartmann Wersener Holz 2a D-49504 Lotte (Deutschland)	Hartmut Hartmann Wersener Holz 2a D-49504 Lotte (Germany)	Hartmut Hartmann Wersener Holz 2a D-49504 Lotte (Saksamaa)	Hartmut Hartmann Wersener Holz 2a D-49504 Lotte (Allemagne)

The Harvesting Specialists

nartmut.hartmann@prodoku.com

MacDon

214254 İ Revision A

hartmut.hartmann@prodoku.com

hartmut.hartmann@prodoku.com

Figure 2. EC Declaration of Conformity Page 2

	EC Decidiation	of Conformity	
IT	ни	LT	LV
Noi, [1]	Mi, [1]	Mes, [1]	Mēs, [1]
Dichiariamo che il prodotto:	Ezennel kijelentjük, hogy a következő termék:	Pareiškiame, kad šis produktas:	Deklarējam, ka produkts:
Tipo di macchina: [2]	Gép típusa: [2]	Mašinos tipas: [2]	Mašīnas tips: [2]
Nome e modello: [3]	Név és modell: [3]	Pavadinimas ir modelis: [3]	Nosaukums un modelis: [3]
Numero(i) di serie: [4]	Szériaszám(ok): [4]	Serijos numeris (-iai): [4]	Sērijas numurs(-i): [4]
soddisfa tutte le disposizioni rilevanti della direttiva	teljesíti a következő irányelv összes vonatkozó	atitinka taikomus reikalavimus pagal Direktyvą	Atbilst visām būtiskajām Direktīvas 2006/42/EK
2006/42/CE.	előírásait: 2006/42/EK.	2006/42/EB.	prasībām.
Utilizzo degli standard armonizzati, come indicato nell'Articolo 7(2):	Az alábbi harmonizált szabványok kerültek alkalmazásra a 7(2) cikkely szerint:	Naudojami harmonizuoti standartai, kai nurodoma straipsnyje 7(2):	Piemēroti šādi saskaņotie standarti , kā minēts 7. panta 2. punktā:
EN ISO 4254-1:2013	EN ISO 4254-1:2013	EN ISO 4254-1:2013	EN ISO 4254-1:2013
EN ISO 4254-7:2009	EN ISO 4254-7:2009	EN ISO 4254-7:2009	EN ISO 4254-7:2009
Luogo e data della dichiarazione: [5]	A nyilatkozattétel ideje és helye: [5]	Deklaracijos vieta ir data: [5]	Deklarācijas parakstīšanas vieta un datums: [5]
Nome e firma della persona autorizzata a redigere la	Azon személy kiléte és aláírása, aki jogosult a		Tās personas vārds, uzvārds un paraksts, kas ir
dichiarazione: [6]	nyilatkozat elkészítésére: [6]	Asmens tapatybės duomenys ir parašas asmens, įgalioto sudaryti šią deklaraciją: [6]	pilnvarota sagatavot šo deklarāciju: [6]
Nome e persona autorizzata a compilare il file	Azon személy neve és aláírása, aki felhatalmazott a	Vardas ir pavardė asmens, kuris įgaliotas sudaryti šį	Tās personas vārds, uzvārds un adrese, kas ir
tecnico:	műszaki dokumentáció összeállítására:	techninį failą:	pilnvarota sastādīt tehnisko dokumentāciju:
Hartmut Hartmann	Hartmut Hartmann	Hartmut Hartmann	Hartmut Hartmann
Wersener Holz 2a	Wersener Holz 2a	Wersener Holz 2a	Wersener Holz 2a
D-49504 Lotte (Germania)	D-49504 Lotte (Németország) hartmut.hartmann@prodoku.com	D-49504 Lotte (Vokietija) hartmut.hartmann@prodoku.com	D-49504 Lotte (Vācija)
hartmut.hartmann@prodoku.com	паттти.патттапп@ргодоки.com	nartmut.nartmann@prodoku.com	harttmut.hartmann@prodoku.com
NL	PO	PT	RO
Wij, [1]	My niżej podpisani, [1]	Nós, [1]	Noi, [1]
Verklaren dat het product:	Oświadczamy, że produkt:	Declaramos, que o produto:	Declarăm, că următorul produs:
Machinetype: [2]	Typ urządzenia: [2]	Tipo de máquina: [2]	Tipul maşinii: [2]
Naam en model: [3]	Nazwa i model: [3]		Denumirea și modelul: [3]
Serienummer(s): [4]	Numer seryjny/numery seryjne: [4]	Nome e Modelo: [3]	Număr (numere) serie: [4]
voldoet aan alle relevante bepalingen van de	spełnia wszystkie odpowiednie przepisy dyrektywy	Número(s) de Série: [4]	corespunde tuturor dispozițiilor esențiale ale
Richtlijn 2006/42/EC.	2006/42/WE.	cumpre todas as disposições relevantes da Directiva 2006/42/CE.	directivei 2006/42/EC.
Geharmoniseerde normen toegepast, zoals vermeld in Artikel 7(2):	Zastosowaliśmy następujące (zharmonizowane) normy zgodnie z artykułem 7(2):	Normas harmonizadas aplicadas, conforme referido no Artigo 7(2):	Au fost aplicate următoarele standarde armonizate conform articolului 7(2):
EN ISO 4254-1:2013	EN ISO 4254-1:2013	EN ISO 4254-1:2013	EN ISO 4254-1:2013
EN ISO 4254-7:2009	EN ISO 4254-7:2009	EN ISO 4254-7:2009	EN ISO 4254-7:2009
Plaats en datum van verklaring: [5]	Data i miejsce oświadczenia: [5]	Lacal a deta da daglaca (C)	Data și locul declarației: [5]
Naam en handtekening van de bevoegde persoon om	lmię i nazwisko oraz podpis osoby upoważnionej do	Local e data da declaração: [5]	Identitatea și semnătura persoanei împuternicite
de verklaring op te stellen: [6]	przygotowania deklaracji: [6]	Identidade e assinatura da pessoa autorizada a elaborar a declaração: [6]	pentru întocmirea declarației: [6]
Naam en adres van de geautoriseerde persoon om	lmię i nazwisko oraz adres osoby upoważnionej do	Nome e endereço da pessoa autorizada a compilar o	Numele și semnătura persoanei autorizate pentru
het technisch dossier samen te stellen:	przygotowania dokumentacji technicznej:	ficheiro técnico:	întocmirea cărții tehnice:
Hartmut Hartmann	Hartmut Hartmann	Hartmut Hartmann	Hartmut Hartmann
Wersener Holz 2a	Wersener Holz 2a	Wersener Holz 2a	Wersener Holz 2a
D-49504 Lotte (Duitsland)	D-49504 Lotte (Niemcy)	D-49504 Lotte (Alemanha)	D-49504 Lotte (Germania)
hartmut.hartmann@prodoku.com	hartmut.hartmann@prodoku.com	hartmut.hartmann@prodoku.com	hartmut.hartmann@prodoku.com
RS	SE	SI	SK
Mi, [1]	Vi, [1]	Mi, [1]	My, [1]
Izjavljujemo da proizvod	Intygar att produkten:	izjavljamo, da izdelek:	týmto prehlasujeme, že tento výrobok:
Tip mašine: [2]	Maskintyp: [2]	Vrsta stroja: [2]	Typ zariadenia: [2]
Naziv i model: [3]	Namn och modell: [3]	Ime in model: [3]	Názov a model: [3]
Serijski broj(evi): [4]	Serienummer: [4]	Serijska/-e številka/-e: [4]	Výrobné číslo: [4]
Ispunjava sve relevantne odredbe direktive 2006/42/EC.	uppfyller alla relevanta villkor i direktivet 2006/42/EG.	ustreza vsem zadevnim določbam Direktive 2006/42/ES.	spíňa príslušné ustanovenia a základné požiadavky smernice č. 2006/42/ES.
Korišæeni su usklađeni standardi kao što je navedeno u èlanu 7(2):	Harmonierade standarder används, såsom anges i artikel 7(2):	Uporabljeni usklajeni standardi, kot je navedeno v členu 7(2):	Použité harmonizované normy, ktoré sa uvádzajú v Článku č. 7(2):
EN ISO 4254-1:2013 EN ISO 4254-7:2009	EN ISO 4254-1:2013 EN ISO 4254-7:2009	EN ISO 4254-1:2013 EN ISO 4254-7:2009	EN ISO 4254-1:2013 EN ISO 4254-7:2009
Datum i mesto izdavanja deklaracije: [5]	Plats och datum för intyget: [5]	Kraj in datum izjave: [5]	Miesto a dátum prehlásenia: [5]
	Identitet och signatur för person med befogenhet att	Istovetnost in podpis osebe, opolnomočene za	Mono a podnie osoby oprávnenci semesecual *
ldentitet i potpis lica ovlašæenog za sastavljanje deklaracije: [6]	Identitet och signatur för person med befogenhet att upprätta intyget: [6]	pripravo izjave: [6]	Meno a podpis osoby oprávnenej vypracovať toto prehlásenie: [6]
lme i adresa osobe ovlašæene za sastavljanje tehnièke datoteke:	Namn och adress för person behörig att upprätta den tekniska dokumentationen:	lme in naslov osebe, pooblaščene za pripravo tehnične datoteke:	Meno a adresa osoby oprávnenej zostaviť technický súbor:
Hartmut Hartmann Wersener Holz 2a	Hartmut Hartmann Wersener Holz 2a	Hartmut Hartmann Wersener Holz 2a	Hartmut Hartmann Wersener Holz 2a
		L D 40504 (
D-49504 Lotte (Nemaèka)	D-49504 Lotte (Tyskland) hartmut.hartmann@prodoku.com	D-49504 Lotte (Nemčija) hartmut.hartmann@prodoku.com	D-49504 Lotte (Nemecko)

Introduction

This manual describes the operating and maintenance procedures for MacDon model A40-D and A40-DX Self-Propelled Windrower Auger Headers, including a Grass Seed version.

An A40-D auger header is factory-configured for connecting to an M Series Self-Propelled Windrower, while an A40-DX auger header is factory-configured to connect to an M1 Series Self-Propelled Windrower.

NOTE:

An A40-D auger header can be used on an M1 Series Self-Propelled Windrower **only** if conversion kit MD #B5998 has been installed on the auger header.

These auger headers are designed to cut, condition, and lay windrows in a wide variety of grasses and hay crops. The double-knife feature expands the operational envelope, especially in heavier crops.

Model	Description	Configuration	Knife	Size (ft.)	Features
A40-D, A40-DX	Auger header with conditioner	Self-propelled only	Double	14, 16, and 18	Separate hydraulic auger, knife, and reel drives, grass seed option

When setting up the machine or making adjustments, review and follow the recommended machine settings in all relevant MacDon publications. Failure to do so may compromise machine function and machine life and may result in a hazardous situation.

Use this manual as your first source of information about the machine. Use the Table of Contents and the Index to guide you to specific topics. Study the Table of Contents to familiarize yourself with how the information is organized. If you follow the instructions provided here, your header will work well for many years.

Keep this manual handy for frequent reference, and to pass on to new Operators or Owners. Contact your Dealer if you need assistance, information, or additional copies of this manual.

CAREFULLY READ THE INFORMATION PROVIDED IN THIS MANUAL BEFORE ATTEMPTING TO OPERATE OR MAINTAIN AN A40-D OR A40-DX AUGER HEADER.

MacDon provides warranty for Customers who operate and maintain their equipment as described in this manual. A copy of the MacDon Industries Limited Warranty Policy, which explains this warranty, should have been provided to you by your Dealer. Damage resulting from any of the following conditions will void the warranty:

- Accident
- Misuse
- Abuse
- · Improper maintenance or neglect
- · Abnormal or extraordinary use of the machine
- Failure to use the machine, equipment, component, or part in accordance with the manufacturer's instructions

Conventions

The following conventions are used in this document:

• Right and left are determined from the operator's position. The front of the header is the side that faces the crop; the back of the header is the side that connects to the windrower.

• Unless otherwise noted, use the standard torque values provided in the auger header operator's manual and technical manual.

NOTE:

Keep your MacDon publications up-to-date. The most current version can be downloaded from our website (www. macdon.com) or from our Dealer-only site (https://portal.macdon.com) (login required).

NOTE:

A Russian translation of this manual can be ordered from MacDon, downloaded from the MacDon Dealer Portal (https://portal.macdon.com) (login required), or downloaded from the MacDon international website (http://www.macdon.com/world).

List of Revisions

The following list provides an account of major changes from the previous version of this document.

Summary of Change	Location
Updated EC Declaration of Conformity.	EC Declaration of Conformity, page i
Updated introduction to include content re: A40-DX.	Introduction, page iii
Updated model and serial number page for relevance to MY 2018.	Model and Serial Number, page ix
Specified that topic is relevant to A40-D header only.	3.4.5 Configuring Reverser Valve Jumper Hose for A40-D, page 50
Updated procedure for A40-D relevance.	3.8.9 Checking/Adjusting Float – M Series, page 73
Updated topic title: relevant to both A40-D, A40-DX.	Lubrication Points: Auger Header, page 107
Updated topic title: relevant to both A40-D, A40-DX.	4.6.1 Servicing Header Hydraulics, page 113
Topic title updated.	4.8.1 Header Knife Drive, page 137
Topic title updated.	Checking/Adjusting V-Belt Tension on Left Side, page 137
Topic title updated.	Removing Double V-Belts from Left Side, page 137
Topic title updated.	Installing Double V-Belts, page 138
Topic title updated.	Checking/Adjusting Timing Belt Tension on Left Side, page 138
Topic title updated.	Removing Timing Belt from Left Side, page 139
Topic title updated.	Installing Timing Belt on Left Side, page 140
Topic title updated.	Checking/Adjusting Timing Belt Tension on Right Side, page 142
Topic title updated.	Removing Timing Belt from Right Side, page 142
Topic title updated.	Installing Timing Belt on Right Side, page 143
Adjusted table formatting to suit new style guidelines, made grammar fixes to table content.	2.2 Product Specifications, page 21
Included M155 <i>E4</i> and M1 Series in reel speed rows.	2.2 Product Specifications, page 21
Added new topic.	3.1 Attaching A40-DX Header to M1 Series SP Windrower, page 25
Added new topic.	3.2 Detaching A40-DX Header from M1 Series SP Windrower, page 28
Added new topic.	3.3 Transporting A40-DX Header with Windrower, page 30
Updated note, added xrefs for related procedures.	3.4 Attaching A40-D Headers to M Series SP Windrowers, page 31

Summary of Change	Location
Updated procedure steps, figure titles and illustrations, notes. Content now relevant to MY 2018 only.	3.4.1 Attaching A40-D to M100 or M105, page 31
Updated procedure steps, figure titles and illustrations, notes. Content now relevant to MY 2018 only.	3.4.2 Attaching A40-D to M150, M155, or M155E4, page 36
Updated procedure steps, figure titles and illustrations, notes. Content now relevant to MY 2018 only.	3.4.3 Attaching A40-D to M200, page 40
Updated procedure steps, figure titles and illustrations, notes. Content now relevant to MY 2018 only.	3.4.4 Attaching to A40-D to M205, page 45
Updated figure title, added a new note about cab display module controls.	3.4.5 Configuring Reverser Valve Jumper Hose for A40-D, page 50
Updated in-text callouts, figure title.	3.5 Detaching A40-D Header from M Series Windrower, page 56
Added warning/hazard statement.	3.6 Transporting A40-D Header with Windrower, page 60
Updated list in tables. No longer use vertically spanned cells.	3.8 Operating Variables, page 62
Added new topic.	3.8.10 Checking/Adjusting Float – M1 Series, page 73
Added new topic.	Checking Float, page 73
Added new topic.	Setting the Float, page 74
Added new topic.	Removing and Restoring Float, page 75
Removed some -hands from the table.	3.8.13 Adjusting Conditioner Roll Tension, page 78
Adjusted orientation of table to landscape to better fit on page. Table formatted to new style standard. Added an xref.	3.9 Recommended Operating Settings, page 82
Updated topic title.	3.10 Unplugging Conditioner and Knife, page 86
Updated topic—removed content re: endshields.	4.2 Driveshields, page 100
Added new topic.	4.3 Endshields, page 101
Updated a hazard statement.	4.5 Lubrication, page 106
New figure titles.	Lubrication Points: Auger Header, page 107
Updated topic description with reference to recommended fluids and lubricants chart at back of book.	4.5.3 Knife and Gearbox Oil, page 111
Updated figure legend.	4.5.3 Knife and Gearbox Oil, page 111
Added new warning statement.	4.7 Cutterbar, page 114
Added new warning statement.	4.7.1 Replacing Knife Section, page 114

Summary of Change	Location
Changed note to step for added clarity in procedure.	4.7.3 Installing Knife, page 115
Added step for measuring gap in installation.	4.7.3 Installing Knife, page 115
Added important note.	4.7.3 Installing Knife, page 115
Removed incorrect callout from text, added correct callout to text.	4.7.5 Installing Knifehead Bearing, page 117
Changed tip to note.	Aligning Guard, page 120
Added new illustration, callouts in text.	4.7.9 Knife Drive Box, page 129
Added new illustrations, callouts in text.	Removing Knife Drive Box, page 130
Added new illustrations, callouts in text.	Installing Knife Drive Box, page 131
New topic title.	4.8 Header Drive Systems, page 137
Updated topic description.	4.8.1 Header Knife Drive, page 137
Added new illustrations and updated callouts to match.	Installing Timing Belt on Left Side, page 140
Updated topic title and description.	4.8.2 Header Reel Drive, page 145
Updated topic title and description.	4.8.3 Header Auger Drive, page 145
Updated topic description and added xrefs for related procedures.	4.9 Reel Tines and Tine Bar Bearings, page 146
Updated illustration and added a note clarifying 'Tine Bar Type A' and 'Tine Bar Type B' and relevance to procedure, user.	4.9.1 Replacing Tine and Bearing: Cam End – Disc #1, page 146
added a note clarifying 'Tine Bar Type A' and 'Tine Bar Type B' and relevance to procedure, user.	4.9.1 Replacing Tine and Bearing: Cam End – Disc #1, page 146
Updated figure titles.	4.9.1 Replacing Tine and Bearing: Cam End – Disc #1, page 146
Removed unnecessary part numbers from miniature parts list.	4.9.1 Replacing Tine and Bearing: Cam End – Disc #1, page 146
Updated illustration and added a note clarifying 'Tine Bar Type A' and 'Tine Bar Type B' and relevance to procedure, user.	4.9.2 Replacing Tine and Bearing: Disc #2, page 150
Corrected callouts.	4.9.2 Replacing Tine and Bearing: Disc #2, page 150
Added introductory text to topic, context for first figure in topic.	4.9.3 Replacing Tine and Bearing: Center Section X, page 154
Added introductory text to topic, context for first figure in topic.	4.9.4 Replacing Tine and Bearing: Opposite Cam – Section Y, page 156

Summary of Change	Location
Added introductory text to topic, context for first figure in topic.	4.9.5 Replacing Tine: Tine Bar Extension – Section Z, page 158
Updated illustrations, steps, and corrected callouts.	4.13.1 Changing Gearbox Oil, page 164
Updated topic title.	4.13.2 Removing Forming Shield, page 166
Updated topic title.	4.13.3 Disassembling Forming Shield, page 167
Updated topic title.	4.13.4 Assembling Forming Shield, page 169
New topic.	4.13.5 Installing Forming Shield, page 170
Updated topic description.	4.13.6 Removing Header Drive Motor, page 173
Updated topic description.	4.13.7 Installing Header Drive Motor, page 174
Updated topic title, description.	4.13.8 Removing Conditioner Gearbox, page 174
Updated topic title, description, added missing callout to procedure.	4.13.9 Installing Conditioner Gearbox, page 176
Updated in-text callouts to match current style standards.	4.13.11 Checking/Adjusting Roll Timing, page 181
Updated figure title, added bundle number to kit description.	5.1.1 Additional Skid Shoes, page 189
Updated figure title, added bundle number to kit description.	5.1.2 Gauge Roller Kit, page 189
Added bundle numbers to kit description.	5.1.3 Replacement Reel Bat Kit, page 190
Added bundle numbers to kit description.	5.1.4 Stub Guard Conversion Kit, page 190
Updated figure title, added bundle number to kit description.	5.1.5 Tall Crop Divider Kit, page 191
Updated header description to include A40-D and A40-DX, added updated U&A part number for MY 2018.	6 Unloading and Assembly, page 193
Table updated to match new style guidelines—no vertically spanned cells.	7.1 Header Performance, page 195
Table updated to match new style guidelines—no vertically spanned cells.	7.2 Mechanical, page 200
Table updated to match new style guidelines—no vertically spanned cells.	8.2 Conversion Chart, page 215
Moved Recommended Fluids and Lubricants table to the book's inside back cover.	Inside back cover.
Removed content for model years prior to 2018.	Throughout the publication.

Model and Serial Number

Record the model number, serial number, and model year
of the header in the spaces below. The header serial
number plate is located on the top of the left end frame (A).

Header Model Number:	
Header Serial Number:	
Year:	

Figure 3. Header Serial Number Plate Location

EC Declaration of Conformity	i
Introduction	iii
List of Revisions	v
Model and Serial Number	ix
Chapter 1: Safety	1
1.1 Safety Alert Symbols	1
1.2 Signal Words	2
1.3 General Safety	3
1.4 Maintenance Safety	5
1.5 Hydraulic Safety	6
1.6 Safety Signs	7
1.6.1 Installing Safety Decals	7
1.7 Safety Sign Locations: Self-Propelled Windrower Header	8
1.8 Understanding Safety Signs	10
1.9 Owner/Operator Responsibilities	16
1.10 Operational Safety	17
Chapter 2: Product Overview	19
2.1 Definitions	19
2.2 Product Specifications	21
Chapter 3: Operation	25
3.1 Attaching A40-DX Header to M1 Series SP Windrower	25
3.2 Detaching A40-DX Header from M1 Series SP Windrower	28
3.3 Transporting A40-DX Header with Windrower	
3.4 Attaching A40-D Headers to M Series SP Windrowers	31
3.4.1 Attaching A40-D to M100 or M105	31
3.4.2 Attaching A40-D to M150, M155, or M155 <i>E4</i>	36
3.4.3 Attaching A40-D to M200	
3.4.4 Attaching to A40-D to M205	
3.4.5 Configuring Reverser Valve Jumper Hose for A40-D	
3.5 Detaching A40-D Header from M Series Windrower	
3.6 Transporting A40-D Header with Windrower	
3.7 Header Lift Cylinder Lock-Out Valves	
3.8 Operating Variables	
3.8.2 Adjusting Auger Speed	
3.8.3 Adjusting Reel Speed	
3.8.4 Setting Auger Position	

66 69 70 72 73 73
65 71 72 73 73
6970727373
71727373
72 73 73
73 73 74
73 73
73
74
76
77
78
80
81
82
86
88
88
88
89
89
90
91
92
93
93
94
96
96
96
96
96
97
97
97
99
99
100

4.3 Endshields	101
4.4 Maintenance Requirements	102
4.4.1 Maintenance Schedule/Record	103
4.4.2 Break-In Inspection	104
4.4.3 Preseason Checks	104
4.4.4 Storage	105
4.5 Lubrication	
4.5.1 Greasing Procedure	
4.5.2 Lubrication Points.	
Lubrication Points: Auger Header	
Lubrication Points: Hay Conditioner	
Lubrication Points: Drivelines	
4.5.3 Knife and Gearbox Oil	
4.5.4 Installing Sealed Bearings	112
4.6 Hydraulics	113
4.6.1 Servicing Header Hydraulics	113
4.6.2 Checking Hoses and Lines	113
4.7 Cutterbar	114
4.7.1 Replacing Knife Section	114
4.7.2 Removing Knife	
4.7.3 Installing Knife	
4.7.4 Removing Knifehead Bearing	
4.7.5 Installing Knifehead Bearing	
4.7.6 Removing Spare Knife from Storage	
4.7.7 Guards	
Aligning Guard	
Replacing Pointed Guards and Hold-Downs	
Replacing Pointed Center Guard on Double-Knife Header	
Replacing Center Stub Guard on Double-Knife Header	
4.7.8 Hold-DownsAdjusting Knife Hold-Down: Pointed Guard – Double-Knife Header	
Adjusting Center Knife Hold-Down: Stub Guard – Double-Knife Header	
4.7.9 Knife Drive Box	
Mounting Bolts	
Removing Knife Drive Box	
Installing Knife Drive Box Removing Pulley	
Installing Pulley	
Changing Knife Drive Box Oil	
4.7.10 Adjusting Knife Timing	134
4.8 Header Drive Systems	137
4.8.1 Header Knife Drive	
Checking/Adjusting V-Belt Tension on Left Side	
Removing Double V-Belts from Left Side	
Installing Double V-Belts	
Checking/Adjusting Timing Belt Tension on Left Side	

Removing Timing Belt from Left Side	
Installing Timing Belt on Left Side	
Checking/Adjusting Timing Belt Tension on Right Side Removing Timing Belt from Right Side	
Installing Timing Belt on Right Side	
4.8.2 Header Reel Drive	
4.8.3 Header Auger Drive	
4.9 Reel Tines and Tine Bar Bearings	
4.9.1 Replacing Tine and Bearing: Cam End – Disc #1	
4.9.2 Replacing Tine and Bearing: Disc #2	
4.9.3 Replacing Tine and Bearing: Center Section X	
4.9.4 Replacing Tine and Bearing: Opposite Cam – Section Y	156
4.9.5 Replacing Tine: Tine Bar Extension – Section Z	158
4.10 Straightening Auger Pans	159
4.11 Replacing Rubber Fingers	160
4.12 Stripper Bar	
4.12.1 Removing Stripper Bar	
4.12.2 Replacing Stripper Bars	
4.12.3 Installing Front Stripper Bar Extensions	
4.13 Conditioner	164
4.13.1 Changing Gearbox Oil	
4.13.2 Removing Forming Shield	166
4.13.3 Disassembling Forming Shield	167
4.13.4 Assembling Forming Shield	169
4.13.5 Installing Forming Shield	170
4.13.6 Removing Header Drive Motor	173
4.13.7 Installing Header Drive Motor	174
4.13.8 Removing Conditioner Gearbox	174
4.13.9 Installing Conditioner Gearbox	176
4.13.10 Checking/Adjusting Roll Alignment	
4.13.11 Checking/Adjusting Roll Timing	181
4.14 Replacing Skid Shoe Wear Plate	184
4.15 Gauge Rollers	186
4.15.1 Removing Gauge Rollers	186
4.15.2 Installing Gauge Rollers	186
4.16 Maintaining the Electrical System	188
Chapter 5: Optional Equipment	189
5.1 Options and Attachments	189
5.1.1 Additional Skid Shoes	189
5.1.2 Gauge Roller Kit	189
5.1.3 Replacement Reel Bat Kit	190
5.1.4 Stub Guard Conversion Kit	190

5.1.5 Tall Crop Divider Kit	191
Chapter 6: Unloading and Assembly	193
Chapter 7: Troubleshooting	195
7.1 Header Performance	195
7.2 Mechanical	
Chapter 8: Reference	203
8.1 Recommended Torques	203
8.1.1 Torque Specifications	
SAE Bolt Torque Specifications	
Metric Bolt Specifications	205
Metric Bolt Specifications Bolting into Cast Aluminum	208
Flare-Type Hydraulic Fittings	208
O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)	210
O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)	212
O-Ring Face Seal (ORFS) Hydraulic Fittings	213
Tapered Pipe Thread Fittings	214
8.2 Conversion Chart	215
Index	217
Recommended Fluids and Lubricants	Inside Back Cover

1 Safety

1.1 Safety Alert Symbols

This safety alert symbol indicates important safety messages in this manual and on safety signs on the machine.

This symbol means:

- ATTENTION!
- BECOME ALERT!
- YOUR SAFETY IS INVOLVED!

Carefully read and follow the safety message accompanying this symbol.

Why is safety important to you?

- · Accidents disable and kill
- Accidents cost
- · Accidents can be avoided

Figure 1.1: Safety Symbol

SAFETY

1.2 Signal Words

Three signal words, **DANGER**, **WARNING**, and **CAUTION**, are used to alert you to hazardous situations. The appropriate signal word for each situation has been selected using the following guidelines:

DANGER

Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

WARNING

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury. It may also be used to alert against unsafe practices.

CAUTION

Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may be used to alert against unsafe practices.

General Safety

CAUTION

The following are general farm safety precautions that should be part of your operating procedure for all types of machinery.

Protect yourself.

- When assembling, operating, and servicing machinery, wear all protective clothing and personal safety devices that could be necessary for job at hand. Do NOT take chances. You may need the following:
 - · Hard hat
 - Protective footwear with slip resistant soles
 - Protective glasses or goggles
 - Heavy gloves
 - Wet weather gear
 - · Respirator or filter mask
- Be aware that exposure to loud noises can cause hearing impairment or loss. Wear suitable hearing protection devices such as ear muffs or ear plugs to help protect against loud noises.

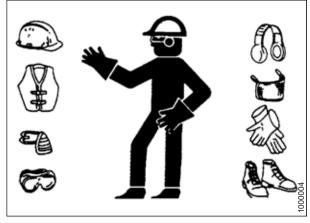
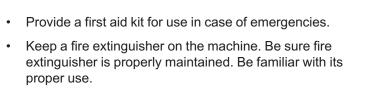



Figure 1.2: Safety Equipment

Figure 1.3: Safety Equipment

- Keep young children away from machinery at all times.
- Be aware that accidents often happen when Operator is tired or in a hurry. Take time to consider safest way. Never ignore warning signs of fatigue.

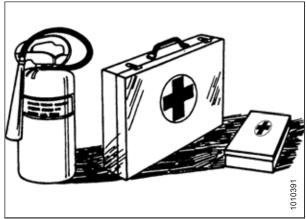


Figure 1.4: Safety Equipment

- Wear close-fitting clothing and cover long hair. Never wear dangling items such as scarves or bracelets.
- Keep all shields in place. NEVER alter or remove safety equipment. Make sure driveline guards can rotate independently of shaft and can telescope freely.
- Use only service and repair parts made or approved by equipment manufacturer. Substituted parts may not meet strength, design, or safety requirements.

Figure 1.5: Safety around Equipment

- Keep hands, feet, clothing, and hair away from moving parts. NEVER attempt to clear obstructions or objects from a machine while engine is running.
- Do NOT modify machine. Unauthorized modifications may impair machine function and/or safety. It may also shorten machine's life.
- To avoid bodily injury or death from unexpected startup of machine, ALWAYS stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

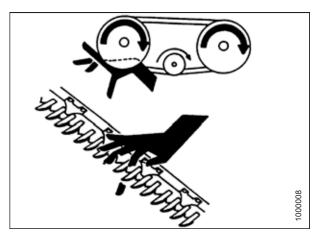


Figure 1.6: Safety around Equipment

- Keep service area clean and dry. Wet or oily floors are slippery. Wet spots can be dangerous when working with electrical equipment. Be sure all electrical outlets and tools are properly grounded.
- · Keep work area well lit.
- Keep machinery clean. Straw and chaff on a hot engine is a fire hazard. Do NOT allow oil or grease to accumulate on service platforms, ladders, or controls. Clean machines before storage.
- NEVER use gasoline, naphtha, or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.
- When storing machinery, cover sharp or extending components to prevent injury from accidental contact.

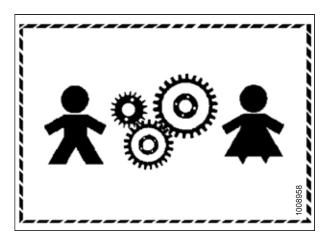
Figure 1.7: Safety around Equipment

1.4 Maintenance Safety

To ensure your safety while maintaining machine:

- Review operator's manual and all safety items before operation and/or maintenance of machine.
- Place all controls in Neutral, stop the engine, set the park brake, remove the ignition key, and wait for all moving parts to stop before servicing, adjusting, and/or repairing.
- · Follow good shop practices:
 - Keep service areas clean and dry
 - Be sure electrical outlets and tools are properly grounded
 - Use adequate lighting for job at hand
- Relieve pressure from hydraulic circuits before servicing and/or disconnecting machine.
- Make sure all components are tight and that steel lines, hoses, and couplings are in good condition before applying pressure to hydraulic systems.
- Keep hands, feet, clothing, and hair away from all moving and/or rotating parts.
- Clear area of bystanders, especially children, when carrying out any maintenance, repairs, or adjustments.
- Install transport lock or place safety stands under frame before working under machine.
- If more than one person is servicing machine at same time, be aware that rotating a driveline or other mechanically-driven component by hand (for example, accessing a lube fitting) will cause drive components in other areas (belts, pulleys, and knives) to move. Stay clear of driven components at all times.
- · Wear protective gear when working on machine.
- Wear heavy gloves when working on knife components.

Figure 1.8: Safety around Equipment



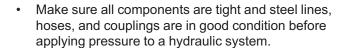

Figure 1.9: Equipment NOT Safe for Children

Figure 1.10: Safety Equipment

1.5 Hydraulic Safety

- Always place all hydraulic controls in Neutral before dismounting.
- Make sure that all components in hydraulic system are kept clean and in good condition.
- Replace any worn, cut, abraded, flattened, or crimped hoses and steel lines.
- Do NOT attempt any makeshift repairs to hydraulic lines, fittings, or hoses by using tapes, clamps, cements, or welding. The hydraulic system operates under extremely high pressure. Makeshift repairs will fail suddenly and create hazardous and unsafe conditions.
- Wear proper hand and eye protection when searching for high-pressure hydraulic leaks. Use a piece of cardboard as a backstop instead of hands to isolate and identify a leak.
- If injured by a concentrated high-pressure stream of hydraulic fluid, seek medical attention immediately.
 Serious infection or toxic reaction can develop from hydraulic fluid piercing the skin.

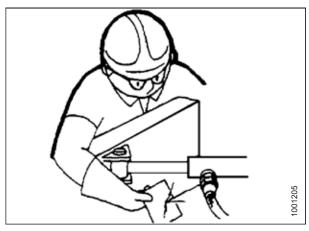


Figure 1.11: Testing for Hydraulic Leaks

Figure 1.12: Hydraulic Pressure Hazard

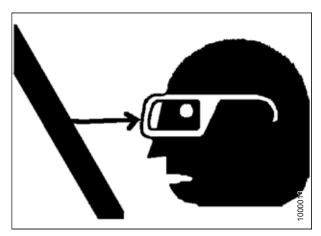


Figure 1.13: Safety around Equipment

1.6 Safety Signs

- · Keep safety signs clean and legible at all times.
- Replace safety signs that are missing or become illegible.
- If original parts on which a safety sign was installed are replaced, be sure repair part also bears current safety sign.
- Replacement safety signs are available from your Dealer Parts Department.

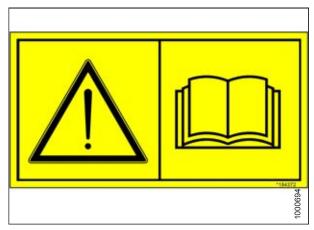


Figure 1.14: Operator's Manual Decal

1.6.1 Installing Safety Decals

- 1. Clean and dry installation area.
- 2. Decide on exact location before you remove decal backing paper.
- 3. Remove smaller portion of split backing paper.
- 4. Place sign in position and slowly peel back remaining paper, smoothing sign as it is applied.
- 5. Prick small air pockets with a pin and smooth out.

1.7 Safety Sign Locations: Self-Propelled Windrower Header

Figure 1.15: Left Side Locations

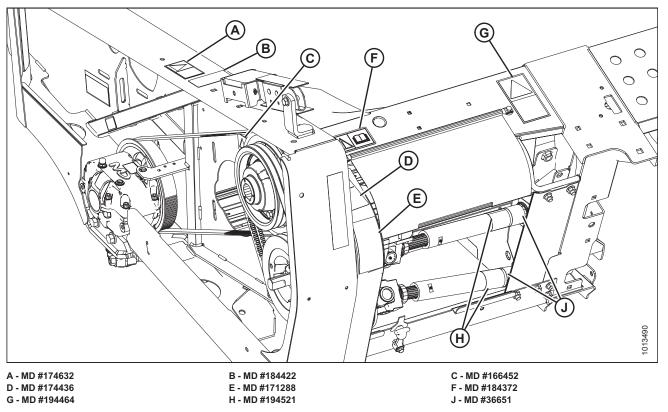


Figure 1.16: Left Side Decals

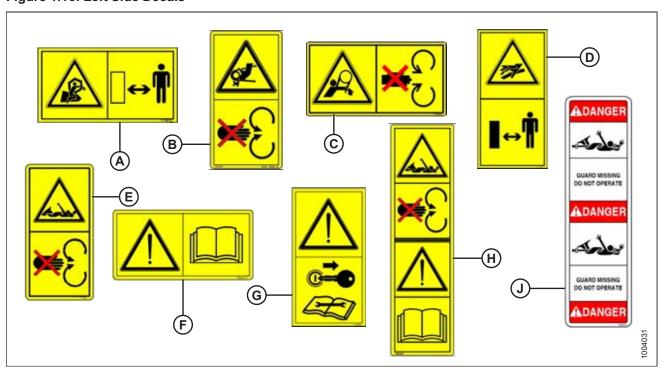


Figure 1.17: Right Side Locations

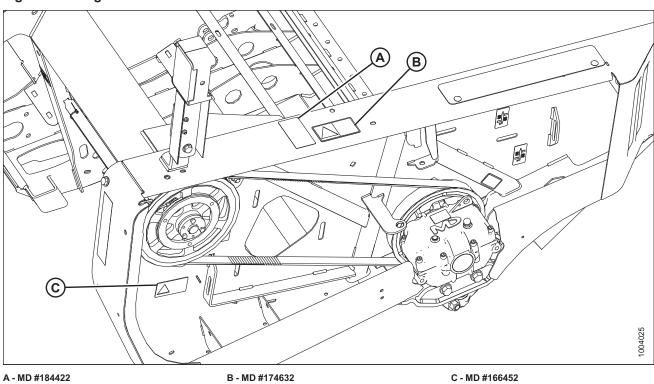
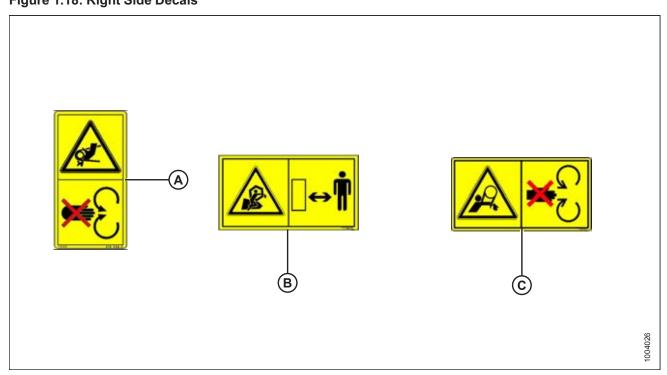



Figure 1.18: Right Side Decals

1.8 Understanding Safety Signs

MD #36651

Rotating driveline

DANGER

Rotating driveline contact can cause death—keep away!

Do not operate without:

- Stopping the engine and removing the key before opening shield.
- All driveline guards, tractor, and equipment shields in place.

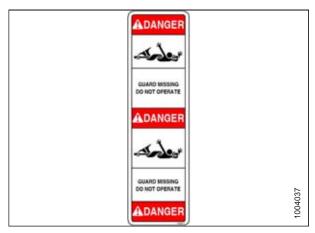


Figure 1.19: MD #36651

MD #113482

General hazard pertaining to machine operation and servicing

CAUTION

To avoid injury or death from improper or unsafe machine operation:

- Read the operator's manual and follow all safety instructions.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- · Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator's position.
- Stop the engine and remove the key before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

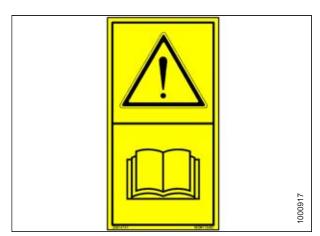


Figure 1.20: MD #113482

Pinch point hazard

WARNING

 To avoid injury, stop the engine and remove the key before opening engine hood.

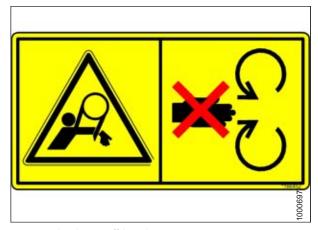


Figure 1.21: MD #166452

MD #166466

High pressure oil hazard

WARNING

- Do not go near leaks.
- High pressure oil easily punctures skin causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- · Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

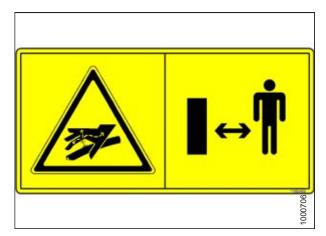


Figure 1.22: MD #166466

MD #171279

Crushing hazard

DANGER

- Read the operator's manual and follow all safety instructions.
- Rest header on ground or engage hydraulic lock-out valves before going under unit.

Figure 1.23: MD #171279

Hot fluid under pressure

CAUTION

• Coolant is under pressure and may be hot. Never remove radiator cap when engine is hot.

Figure 1.24: MD #171281

MD #171286

Lock pull-type hydraulic for transport

WARNING

- Charge cylinder with oil before towing.
- Rotate valve handle to lock in transport position.
- · Maximum towing speed 32 km/h (20 mph).
- · Failure to comply could result in death or serious injury.

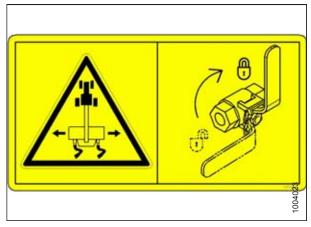


Figure 1.25: MD #171286

MD #171287

Install lock panel

WARNING

- Rotate valve handle to lock before going under unit.
- · Failure to comply could result in death or serious injury.

Figure 1.26: MD #171287

Entanglement hazard

CAUTION

• To avoid injury from entanglement with rotating auger, stand clear of header while machine is running.

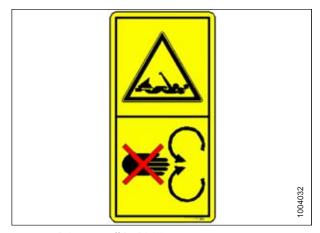


Figure 1.27: MD #171288

MD #174436

High pressure oil hazard

WARNING

- Do not go near leaks.
- High pressure oil easily punctures skin causing serious injury, gangrene, or death.
- If injured, seek emergency medical help. Immediate surgery is required to remove oil.
- · Do not use finger or skin to check for leaks.
- Lower load or relieve hydraulic pressure before loosening fittings.

Figure 1.28: MD #174436

MD #174632

Reel entanglement hazard

CAUTION

• To avoid injury from entanglement with rotating reel, stand clear of header while machine is running.

Figure 1.29: MD #174632

SAFETY

MD #184372

General hazard pertaining to machine operation and servicing

CAUTION

To avoid injury or death from improper or unsafe machine operation:

- Read the operator's manual and follow all safety instructions.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators annually.
- Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- · Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.
- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator's position.
- Stop the engine and remove the key from ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage safety props to prevent lowering of raised unit before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

MD #184422

Keep shields in place hazard

WARNING

- · Do not place hand.
- To avoid injury, stop the engine and remove the key before opening power drive system shield.
- · Keep all shields in place.

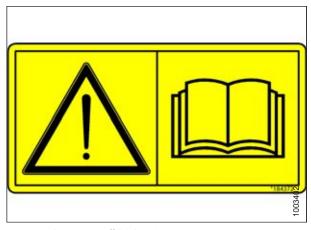


Figure 1.30: MD #184372

Figure 1.31: MD #184422

Shut down for service

WARNING

- Stop the engine and remove the key.
- Read the windrower and header manuals for inspection and maintenance instructions.

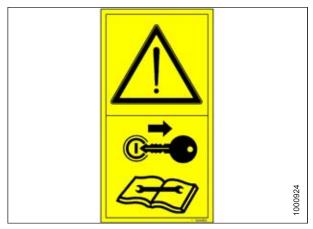


Figure 1.32: MD #194464

MD #194521

Auger entanglement hazard

CAUTION

 To avoid injury from entanglement with rotating auger, stand clear of header/mower while machine is running.

General hazard pertaining to machine operation and servicing.

CAUTION

- Read the operator's manual and follow safety instructions.
- Do not allow untrained persons to operate the machine.
- Review safety instructions with all Operators every year.
- · Ensure that all safety signs are installed and legible.
- Make certain everyone is clear of machine before starting engine and during operation.
- Keep riders off the machine.
- Keep all shields in place and stay clear of moving parts.

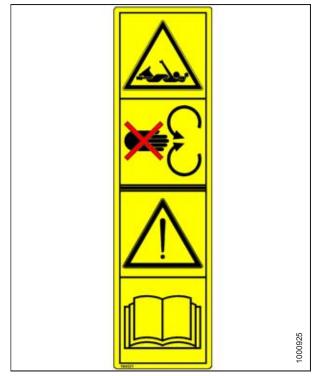


Figure 1.33: MD #194521

- Disengage header drive, put transmission in Neutral, and wait for all movement to stop before leaving operator's position.
- Stop the engine and remove the key from ignition before servicing, adjusting, lubricating, cleaning, or unplugging machine.
- Engage locks to prevent lowering of header or reel before servicing in the raised position.
- Use slow moving vehicle emblem and flashing warning lights when operating on roadways unless prohibited by law.

1.9 Owner/Operator Responsibilities

CAUTION

- It is your responsibility to read and understand this manual completely before operating the header. Contact your Dealer if an instruction is not clear to you.
- Follow all safety messages in the manual and on safety signs on the machine.
- Remember that YOU are the key to safety. Good safety practices protect you and the people around you.
- Before allowing anyone to operate the header, for however short a time or distance, make sure they have been instructed in its safe and proper use.
- · Review the manual and all safety related items with all Operators annually.
- Be alert for other Operators not using recommended procedures or not following safety precautions. Correct these mistakes immediately, before an accident occurs.
- Do not modify the machine. Unauthorized modifications may impair the function and/or safety and affect machine life.
- Safety information given in this manual does not replace safety codes, insurance needs, or laws governing your area. Be sure your machine meets the standards set by these regulations.
- Ensure that windrower is properly equipped to safely operate header. This may include adding ballast according to the tractor operator's manual requirements for attachments of this size and mass.

1.10 Operational Safety

CAUTION

- Follow all safety and operational instructions given in your operator's manual. If you do not have a windrower manual, get one from your Dealer and read it thoroughly.
- · Never attempt to start windrower engine or operate the machine, except from the operator's seat.
- Check the operation of all controls in a safe clear area before starting work.
- Do not allow riders on windrower.
- Never start or move the machine until you are sure all bystanders have cleared the area.
- · Avoid travelling over loose fill, rocks, ditches or holes.
- · Drive slowly through gates and doorways.
- If cutting ditch banks, use extreme caution. If the header hits an obstruction, front of the windrower will usually swerve towards the ditch.
- · When working on inclines, travel uphill or downhill when possible. Be sure to keep windrower transmission in gear when travelling downhill.
- Never attempt to get on or off a moving windrower.
- Do not get off the windrower while the machine is in operation.
- . To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before adjusting or removing plugged material from the machine.
- · Operate only in daylight or good artificial light.

CAUTION

Check for excessive vibration and unusual noises. If there is any indication of trouble, shut down and inspect machine. Follow proper shutdown procedure as follows:

- Engage windrower brake.
- Disengage PTO.
- · Turn engine OFF, and remove key.
- · Wait for all movement to stop
- Dismount and engage cylinder stops before inspecting raised machine.

2 Product Overview

2.1 Definitions

The following terms and acronyms may be used in this manual.

Definition	
MacDon A40-D, A40-DX, and Grass Seed Special auger headers	
American Petroleum Institute	
American Society of Testing and Materials	
A headed and externally threaded fastener that is designed to be paired with a nut	
Windrower operation with Operator and cab facing in direction of travel	
Cab display module on a self-propelled windrower	
A hydraulic cylinder link between header and machine used to change header angle	
Combined vehicle gross weight	
Double knife	
Double-knife drive	
Double Windrow Attachment	
Engine control module	
Electronic control unit	
Header configuration typical outside North America	
Finger tight is a reference position where sealing surfaces or components are making contact with each other, and fitting has been tightened to a point where fitting is no longer loose	
Flats from finger tight	
Grass Seed Special	
Gross vehicle weight	
A joint made with use of a fastener where joining materials are highly incompressible	
A machine that cuts and lays crop into a windrow and is attached to a self-propelled windrower	
A tool of hexagonal cross-section used to drive bolts and screws that have a hexagonal socket in head (internal-wrenching hexagon drive); also known as an Allen key and various other synonyms	
Horsepower	
Joint Industrial Council: A standards body that developed standard sizing and shape for original 37° flared fitting	
A cutting device which uses a reciprocating cutter (also called a sickle)	
Not applicable	

Term	Definition	
Nut	An internally threaded fastener that is designed to be paired with a bolt	
N-DETENT	The slot opposite the NEUTRAL position on operator's console	
North American header	Header configuration typical in North America	
NPT	National Pipe Thread: A style of fitting used for low pressure port openings. Threads on NPT fittings are uniquely tapered for an interference fit	
ORB	O-ring boss: A style of fitting commonly used in port opening on manifolds, pumps, and motors	
ORFS	O-ring face seal: A style of fitting commonly used for connecting hoses and tubes This style of fitting is also commonly called ORS, which stands for O-ring seal	
rpm	Revolutions per minute	
RoHS (Reduction of Hazardous Substances)	A directive by the European Union to restrict use of certain hazardous substances (such as hexavalent chromium used in some yellow zinc platings)	
SAE	Society of Automotive Engineers	
Screw	A headed and externally threaded fastener that threads into preformed threads or forms its own thread into a mating part	
Self-Propelled (SP) Windrower	Self-propelled machine consisting of a power unit with a header	
SK	Single knife	
SKD	Single-knife drive	
Soft joint	A joint made with use of a fastener where joining materials are compressible or experience relaxation over a period of time	
spm	Strokes per minute	
Timed knife drive	Synchronized motion applied at cutterbar to two separately driven knives from a single hydraulic motor	
Tension	Axial load placed on a bolt or screw, usually measured in Newtons (N) or pounds (lb.)	
TFFT	Turns from finger tight	
Torque	The product of a force X lever arm length, usually measured in Newton-meters (Nm) or foot-pounds (lbf·ft)	
Torque angle	A tightening procedure where fitting is assembled to a precondition (finger tight) and then nut is turned farther a number of degrees to achieve its final position	
Torque-tension	The relationship between assembly torque applied to a piece of hardware and axial load it induces in bolt or screw	
Non-timed knife drive	Unsynchronized motion applied at cutterbar to two separately driven knives from a single hydraulic motor or two hydraulic motors	
Washer	A thin cylinder with a hole or slot located in the center that is to be used as a spacer, load distribution element, or a locking mechanism	
Windrower	Power unit of a self-propelled header	
WCM	Windrower control module	

2.2 Product Specifications

NOTE:

Specifications and design are subject to change without notice, or obligation to revise previously sold units.

Table 2.1 A40-D, A40-DX Self-Propelled Windrower Auger Header Specifications

Cutterbar			
Effective cutting width	14-foot header	4496 mm (14 ft 9 in.)	
Effective cutting width	16-foot header		4953 mm (16 ft 3 in.)
Effective cutting width	18-foot header	5410 mm (17 ft 9 in.)	
Double-knife drive: hydraulic motor to two "B" belts/timing belts to enclosed heavy duty (MD) knife drive boxes			Standard
Knife stroke			76 mm (3 in.)
Knife speed (strokes per minute)	Factory	No load	1400–1950
Knife speed (strokes per minute)	Factory	Load	1400–1950
Knife speed (strokes per minute)	Switching pulleys	No load	1400–1950
Knife speed (strokes per minute)	Switching pulleys		
Double heat-treated forged pointer	Double heat-treated forged pointed guards		
Bolted over-serrated knife sections – 9 serrations per inch			Standard
Center overlap			3 mm (1/8 in.)
Cutterbar lift range (measured at guard tip)	Below ground	150 mm (5-3/4 in.)	
Cutterbar lift range (measured at guard tip)	Above ground	900 mm (35-3/8 in.)	
Guard angle (cutterbar on ground)			7 to 17-1/2 degrees
Replaceable, abrasion-resistant cutterbar wear plates			Standard
Inner skid shoes, adjustable set of two (can be relocated to outboard location)			Standard
Outer skid shoes or gauge rollers			Optional
Outer gauge rollers			Optional
Auger			
Diameter	Overall		508 mm (20 in.)
Diameter	Tube O.D.		254 mm (10 in.)
Undershot, center feed			Standard
Flighting	Width		127 mm (5 in.)
Flighting	Thickness	6 mm (1/4 in.)	
Pitch			590 mm (23-1/4 in.)
Rubber feed fingers			Standard

Table 2.1 A40-D, A40-DX Self-Propelled Windrower Auger Header Specifications (continued)

,		,	
Stripper bars (three per side)	Standard		
Auger drive	Hydraulic, 15.9 cu in. (261 cc) per rev direct mounted motor	Standard	
Auger speed	SP windrower	230–320 rpm	
Replaceable high density polyeth	Standard		
Rock drop tines at discharge ope	Standard		
Delivery opening width		2430 mm (95-11/16 in.)	
Reel			
Oval closed section bats with end NOTE : A40-D Grass Seed Speci	6 bats optional 7 bat		
Steel fingers		6 mm (1/4 in.) diameter	
Reel radius (to finger tip)	540 mm (22 in.)		
Single piece tine bar with replace	N/A		
Sectioned tine bar with regreasal	Standard		
Drive	Mechanical, two "B" belts from auger to 60H roller chain	N/A	
Drive	Hydraulic motor: 14.2 cu in. (232 cc) /rev to enclosed gearbox	Standard	
Reel speed	M100/M105/M205 SP hydraulic variable	50–85 rpm	
Reel speed	M150/M155/M155 <i>E4</i> /M200 SP hydraulic variable	15–85 rpm	
Reel speed	M1170/M1240 SP hydraulic variable	15–85 rpm	
Hay Conditioner			
Roll-type		Intermeshing steel bars	
Roll size	Length	2590 mm (102 in.)	
Roll size	Overall	233 mm (9-3/16 in.)	
Roll size	Tube	168 mm (6-5/8 in.)	
Drive: 44 cc. hydraulic piston mot	tor to enclosed gearbox	Standard	
Roll speed	SP windrower	601–810 rpm	
Plug Prevention / Unplugging			
Self-propelled	Reverse hydraulic flow to three motors (reverses knife, auger, reel, and conditioner)	Optional	
Swath Forming Shield			
Swath width range	915 mm (36 in.) to 2540 mm (100 in.)		
Header-mounted adjustable baffl	Standard		

Table 2.1 A40-D, A40-DX Self-Propelled Windrower Auger Header Specifications (continued)

Attachment	Windrower		
Adjustable side deflectors	Standard		
Frame And Structure			
Two amber transport lights	Standard		
Header width	Nominal cut width plus 480 mm (18-7/8 in.)		
Header attachment	Windrower		
Spare knife storage	Lean bar		
Tool and parts storage compartment	N/A		
Header Hydraulics Connection			
Direct coupled hoses	N/A		
Hydraulic quick couplers	Standard		
Attachments And Accessories			
Header reversing wrench and guard straightening tool	Standard		
Double Windrow Attachment (DWA) M150/M155/M200/M205 windrowers	Optional		

3 Operation

This chapter will describe the operating procedures for the A40-D and A40-DX SP Windrower Auger Header.

3.1 Attaching A40-DX Header to M1 Series SP Windrower

Refer to your windrower operator's manual for procedures to mechanically attach an A40-DX auger header to an M1 Series Self-Propelled Windrower and for modifications (if required) to the windrower hydraulic connections.

IMPORTANT:

If attempting to attach an A40-D Header to an M1170 or M1240 Windrower, the M1 Series Conversion kit **MD #B5998** must first be installed. The kit includes a new manifold and hose bundle required for operation with an M1 Series Windrower, and effectively converts an A40-D header into an A40-DX header.

Header drive hydraulic hoses and electrical harness are located on the left, cab-forward side of the windrower. To connect the hydraulic and electrical bundle from an A40-DX header to an M1 Series SP windrower, follow these steps:

 Route header hose bundle through hose guide (A) on header as shown.

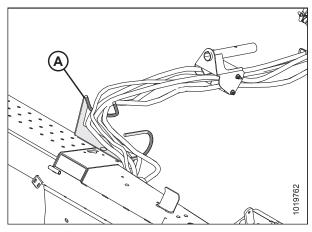


Figure 3.1: Hose Bundle

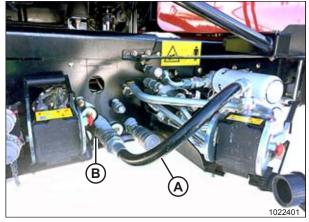
2. Insert hose support (A) into hole in the windrower left leg, and route the header hose bundle (B) under the windrower to the hydraulic and electrical couplers.

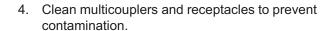
Figure 3.2: Hose Support

3. If attaching to a disc-ready windrower, ensure knife drive hose (A) is connected to coupler (B).

NOTE:

Hose (A) provides power to run the knife/conditioner.




Figure 3.3: M1170/M1240 – Disc Header Configured

A (2)

Figure 3.4: M1170 Standard Configuration – Auger/Draper Ready

NOTE:

M1170 Windrowers with standard auger/draper configuration don't require the knife drive hose; only the two multicouplers (A) are used to connect the auger header.

- 5. Push button (A) on rear multicoupler receptacle and pull handle (B) away from windrower.
- Open cover (C) and position multicoupler (D) onto receptacle. Align pins in coupler with slots in handle (B), and push handle toward windrower so that coupler is locked onto receptacle and button (A) snaps out.
- 7. Push button (E) on front multicoupler receptacle and pull handle (F) away from windrower.
- 8. Open cover (H) and position multicoupler (G) onto receptacle. Align pins in coupler with slots in handle, and push handle (F) toward windrower so that coupler is locked onto receptacle and button (E) snaps out.



Figure 3.5: Multicouplers

9. Remove cover from receptacle (A) and connect electrical harness from header.

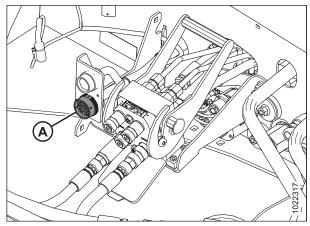


Figure 3.6: Windrower Electrical Connector

3.2 Detaching A40-DX Header from M1 Series SP Windrower

Refer to your windrower operator's manual for procedures to mechanically detach the auger header from the self-propelled M1 Series windrower. To detach an A40-DX header's hydraulics and electrical from an M1 Series SP windrower, follow these steps:

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

1. Disconnect header electrical harness from receptacle (A) on windrower multicoupler.

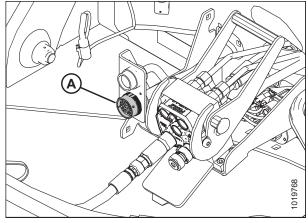


Figure 3.7: Windrower Electrical Connector

- 2. Push button (E) on front multicoupler, and pull handle (F) away from windrower.
- Remove multicoupler (G) from receptacle and set aside. Clean multicouplers and receptacles to prevent contamination. Install caps and plugs on hoses and fittings (if equipped).
- 4. Close cover (H) and push handle (F) towards windrower until button (E) snaps out.
- 5. Push button (A) on rear multicoupler, and pull handle (B) away from the windrower.
- Remove multicoupler (D) from receptacle and set aside. Clean multicouplers and receptacles to prevent contamination. Install caps and plugs on hoses and fittings (if equipped).
- 7. Close cover (C) and push handle (B) towards windrower until button (A) snaps out.

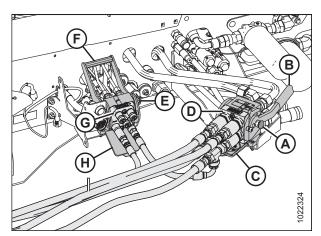


Figure 3.8: Multicouplers

8. Remove hose support (A) from hole in windrower left leg, and remove header hose bundle (B) from the windrower.

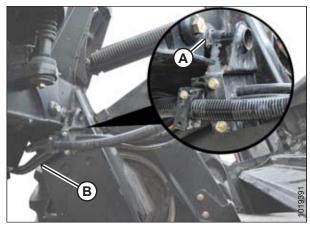


Figure 3.9: Hose Support

- 9. Keeping hose bundle (A) in hose guide (B), store hose bundle on top of header walkway (C), away from the windrower.
- 10. Detach header from windrower. For instructions, refer to your windrower operator's manual.

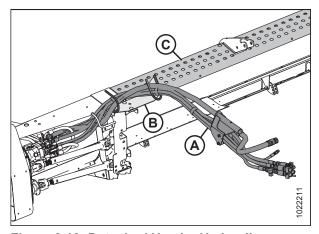


Figure 3.10: Detached Header Hydraulics Bundle

3.3 Transporting A40-DX Header with Windrower

Refer to your windrower operator's manual for information about transporting headers when attached to a windrower. The orientation of the reflectors on the hazard light fixtures is dependent on the direction of travel for Dual Direction® windrowers.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

The amber reflectors **MUST** always face the direction of travel (C), and are changed as follows:

- 1. Lower header to the ground, shut off engine and remove key from ignition.
- 2. Remove bolts (A) from reflector assembly (B), and remove assembly from light fixture. Retrieve spacers (nuts).



Figure 3.11: Engine-Forward Mode

3. Rotate reflector assembly (B), and reinstall ensuring amber side is facing direction of travel (C).

NOTE:

Ensure reflector assembly is installed as shown. Otherwise it will interfere with the driveshield in the open position.

- 4. Secure with bolts (A), spacers, and nuts.
- 5. Repeat above steps for other light.

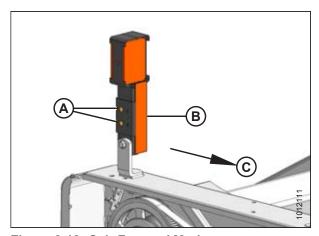


Figure 3.12: Cab-Forward Mode

3.4 Attaching A40-D Headers to M Series SP Windrowers

Refer to your windrower operator's manual for procedures to mechanically attach the auger header to the self-propelled windrower and for modifications if required to the windrower hydraulic connections.

Refer to the following procedures for electrical and hydraulic connections. Header drive hydraulic hoses and electrical harness are located on the left cab-forward side of the windrower.

IMPORTANT:

For M150, M155, M155*E*4, and M200 Windrowers with Reverser kit **MD** #**B4656** installed, hose plumbing to the reverser valve must be changed if switching between a D Series Draper Header with a conditioner and an A40-D Auger Header to prevent damage to the reel drive motor and improper operation. Refer to 3.4.5 Configuring Reverser Valve Jumper Hose for A40-D, page 50 and (if necessary) to instruction MD #169213 (Reverser Kit Installation Instructions), available from our Dealer-only site (https://portal.macdon.com) (login required).

NOTE:

Header reel motor hose routing must be properly configured before attaching the header to a windrower. Hose routing on the header is factory-configured for M150, M155, M155*E4*, and M200 Windrowers. Hose routing on the header must be reconfigured for M100, M105, or M205 Windrowers. Refer to the following procedures:

- 3.4.1 Attaching A40-D to M100 or M105, page 31
- 3.4.4 Attaching to A40-D to M205, page 45
- 3.4.6 Routing A40-D Hydraulic Drive Hoses, page 51

3.4.1 Attaching A40-D to M100 or M105

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

M100 and M105 Self-Propelled Windrowers are factory-equipped with four header drive hoses (A) on the left side.

Figure 3.13: Header Drive Hoses

 Disengage rubber latch (A) and open driveline shield (B).

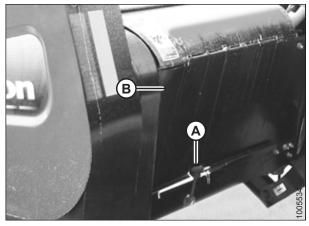


Figure 3.14: Driveline Shield

- 2. Remove the cap (A) from electrical connector and remove connector from support bracket.
- 3. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).



Figure 3.15: Support Bracket and Hose Bundle

- 4. Move hose/electrical bundle (A) to header.
- 5. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.
- 6. Remove cover on header electrical receptacle (E).
- 7. Push connector onto receptacle and turn collar on connector to lock it in place.
- 8. Attach cover to mating cover on windrower wiring harness.
- 9. Remove caps from hydraulic couplers. Clean if necessary.

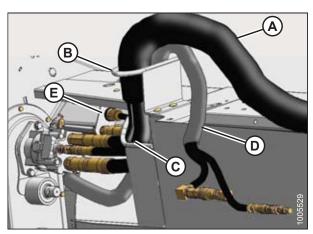


Figure 3.16: Hose and Electrical Bundle – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

 Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.

NOTE:

Hoses attached to connectors not shown in illustrations at right.

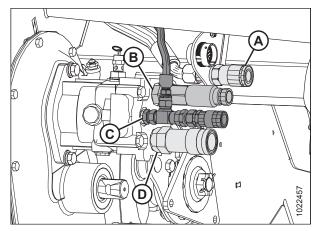


Figure 3.17: 2018 A40-D Header – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

- A Reel Pressure
- **B** Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

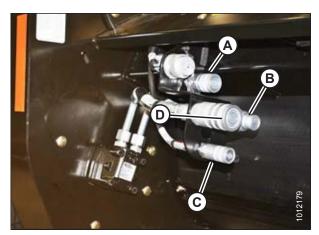


Figure 3.18: A40-D Grass Seed Header Hose Connectors

- A Reel and Auger Pressure
- **B Knife and Conditioner Return**
- C Case Drain
- D Knife and Conditioner Pressure

- 11. Route auger return and reel pressure hose bundle (A) from header to windrower, and position bundle above existing hose support (C) as shown.
- 12. Secure with three straps (D), and lower lever (B).

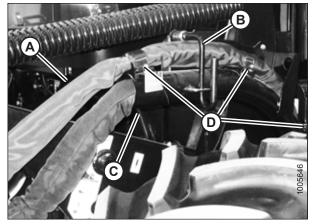


Figure 3.19: Auger Return and Reel Pressure Hose Bundle

13. If valve blocks are **NOT** configured as shown (A), install required fittings as described in the unloading and assembly instructions that were supplied with your A40-D Auger Header.

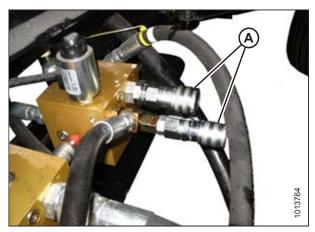


Figure 3.20: Valve Block Configuration

14. Push auger/reel pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.

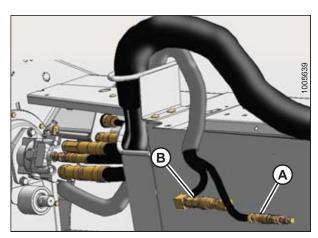


Figure 3.21: Auger/Reel Pressure and Auger/Reel Return Hose Couplers – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

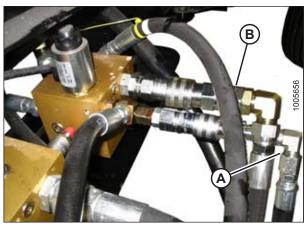


Figure 3.22: Auger/Reel Pressure and Auger/Reel Return Valve Block Receptacles

15. Check hose routing at the reel motor.

NOTE:

The hose routing depends on which windrower model the header is being attached to. The header is factory-configured for M150, M155, M155*E4*, and M200 Windrowers.

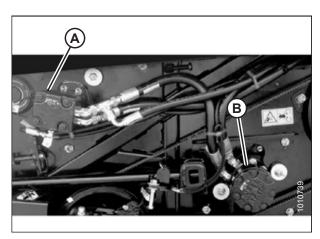


Figure 3.23: Factory Routing M150, M155, and M200

A - Reel Motor

B - Auger Motor

16. For procedure to change hose routing for M100 or M105 Windrowers, refer to 3.4.6 Routing A40-D Hydraulic Drive Hoses, page 51.

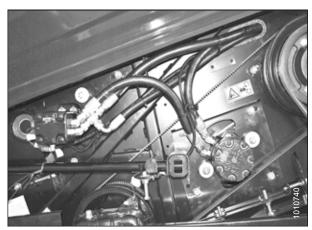


Figure 3.24: Modified Routing M100, M105, and M205

Attaching A40-D to M150, M155, or M155*E4* 3.4.2

A CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

M150, M155, and M155E4 self-propelled windrowers are factory-equipped with four header drive hoses (A) on the left side.

Figure 3.25: Header Drive Hoses

Disengage rubber latch (A) and open driveline shield (B).

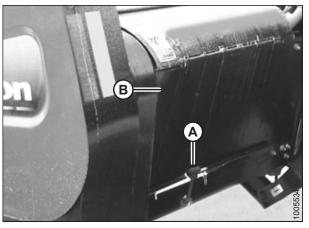


Figure 3.26: Driveline Shield

- 2. Remove the cap (A) from electrical connector and remove connector from support bracket.
- 3. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).

Figure 3.27: Support Bracket and Hose Bundle

- 4. Move hose/electrical bundle (A) to header.
- 5. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.
- 6. Remove cover on header electrical receptacle (E).
- 7. Push connector onto receptacle and turn collar on connector to lock it in place.
- 8. Attach cover to mating cover on windrower wiring harness.
- 9. Remove caps from hydraulic couplers. Clean if necessary.
- 10. Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.

NOTE:

Hoses attached to connectors not shown in illustrations at right.

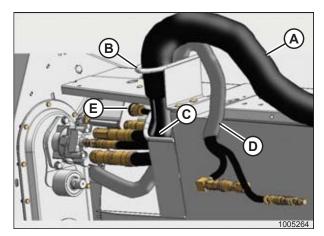


Figure 3.28: Hose and Electrical Bundle – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

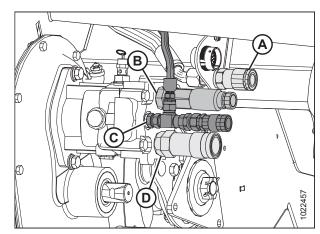


Figure 3.29: A40-D Header – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

- A Reel Pressure
- B Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

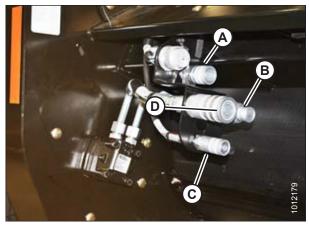


Figure 3.30: Grass Seed Header Hose Connectors

- A Reel and Auger Pressure
- **B** Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure
- 11. Route auger return and reel pressure hose bundle (A) from header to windrower and position bundle above existing hose support (C) as shown.
- 12. Secure with three straps (D), and lower lever (B).

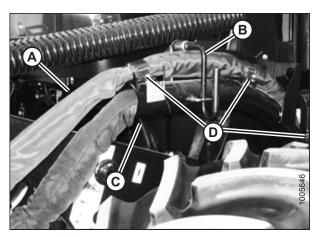


Figure 3.31: Auger Return and Reel Pressure Hose Bundle

13. If valve blocks are **NOT** configured as shown at right, install required fittings as described in the A40-D Auger Self-Propelled Windrower Header Unloading and Assembly Instructions, which were supplied with your A40-D Auger Header.

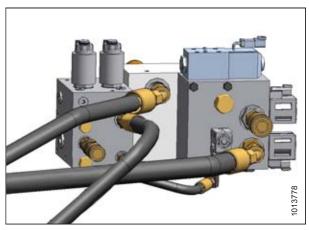


Figure 3.32: M150/M155/M155*E4* with Reverser Valve

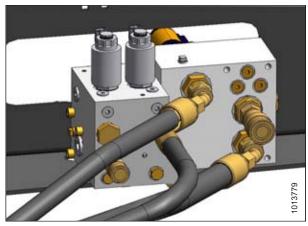


Figure 3.33: M150/M155/M155*E4* without Reverser Valve

- 14. Locate the auger pressure (A) and auger/reel return (B) hoses.
- 15. Proceed to 3.4.5 Configuring Reverser Valve Jumper Hose for A40-D, page 50.

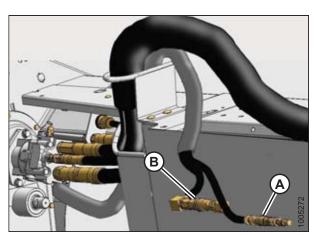


Figure 3.34: Auger Pressure and Auger/Reel Return Hose Couplers – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

16. Push auger pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.

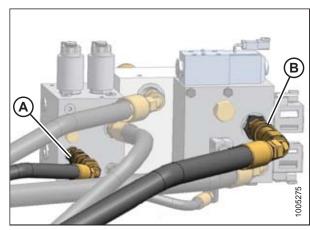


Figure 3.35: M150/M155/M155*E4* with Reverser Valve

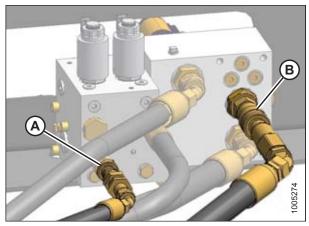


Figure 3.36: M150/M155/M155*E4* without **Reverser Valve**

Attaching A40-D to M200

A CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

The M200 Windrower requires four drive hoses (A) to run an A40-D Auger Header.

Figure 3.37: Drive Hoses

If only three drive hoses are present, before following the procedure below, configure the M200 to run an A40-D Auger Header by installing kit MD #B4651. The kit includes an additional hose (A), hardware, and installation instructions.

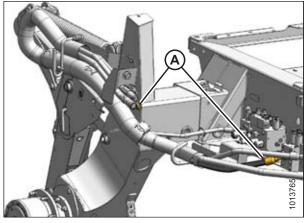


Figure 3.38: Kit MD #B4651

1. Disengage rubber latch (A), and open driveline shield (B).

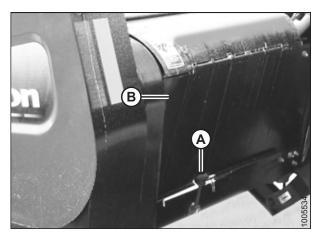


Figure 3.39: Driveline Shield

- 2. Remove cap (A) from electrical connector, and remove connector from support bracket.
- 3. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).

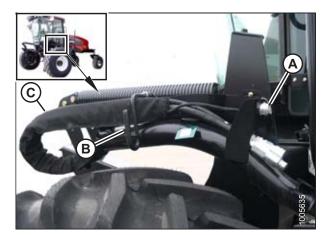


Figure 3.40: Support Bracket and Hose Bundle

- 4. Move hose/electrical bundle (A) to header.
- 5. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.
- 6. Remove cover on header electrical receptacle (E).
- 7. Push connector onto receptacle, and turn collar on connector to lock it in place.
- 8. Attach cover to mating cover on windrower wiring harness.
- 9. Remove caps from hydraulic couplers. Clean if necessary.
- Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.

NOTE:

Hoses attached to connectors not shown in illustrations at right.

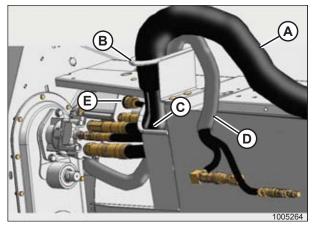


Figure 3.41: Hose and Electrical Bundle – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

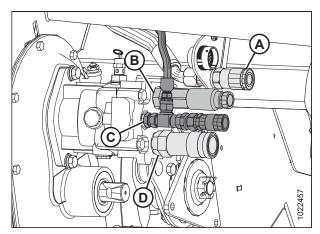


Figure 3.42: A40-D Header – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

- A Reel Pressure
- B Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

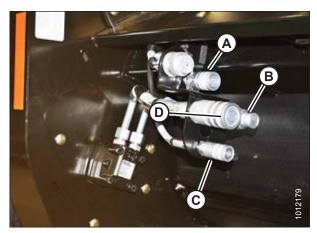


Figure 3.43: Grass Seed Header Hose Connectors

- A Reel and Auger Pressure
- B Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure
- 11. Route auger return and reel pressure hose bundle (A) from header to windrower, and position bundle above existing hose support (C) as shown.
- 12. Secure with three straps (D), and lower lever (B).

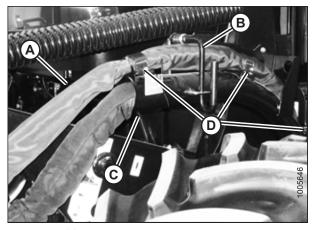


Figure 3.44: Auger Return and Reel Pressure Hose Bundle

13. If valve blocks are **NOT** configured as shown at right, install required fittings as described in the unloading and assembly instructions supplied with your A40-D Auger Header.

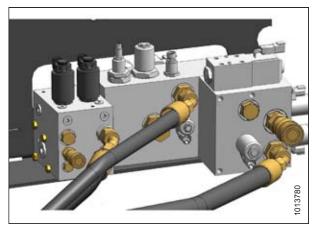


Figure 3.45: M200 with Reverser Valve

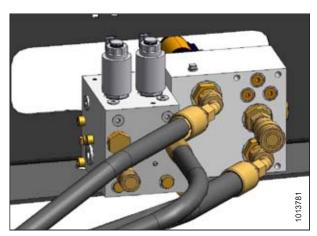


Figure 3.46: M200 without Reverser Valve

14. Locate the auger pressure (A) and auger/reel return (B) hoses.

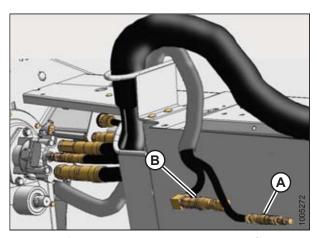


Figure 3.47: Auger Pressure and Auger/Reel Return Hose Couplers – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

- 15. Push auger pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.
- If valve blocks are **NOT** configured as shown above, install required fittings as described in the unloading and assembly instructions supplied with your A40-D Auger Header.

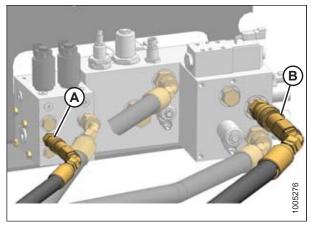


Figure 3.48: M200 with Reverser Valve

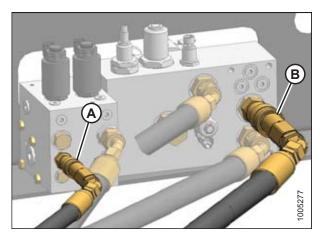


Figure 3.49: M200 without Reverser Valve

17. Proceed to 3.4.5 Configuring Reverser Valve Jumper Hose for A40-D, page 50.

3.4.4 Attaching to A40-D to M205

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

The M205 Windrower must be equipped with an auger drive basic kit and a completion kit as shown at right. If necessary, order and install the following kits shown in the table below. Instructions are supplied with the kits.

Kit Description	MacDon Part Number
Base kit	MD #B5491
Reverser kit1	MD #B5492
Coupler	MD #B5497

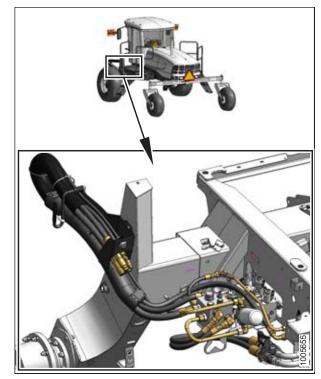


Figure 3.50: Auger Drive Basic Kit and Completion Kit Installed

 Disengage rubber latch (A), and open driveline shield (B).

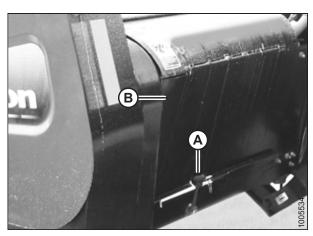


Figure 3.51: Driveline Shield

^{1.} Reverser kit is optional and not required, although most A40-D Headers have a Reverser kit (MD #B5492) ordered for the windrower. Install prior to hook-up if required.

- 2. Remove cap (A) from the electrical connector, and remove the connector from the support bracket.
- 3. Disengage and rotate lever (B) counterclockwise to fully up position to release the hose bundle (C).
- 4. Move hose/electrical bundle (C) to header.

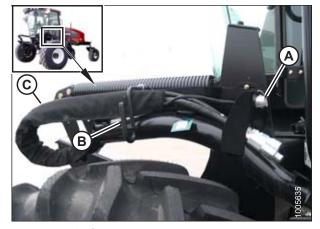


Figure 3.52: Support Bracket and Hose Bundle

- 5. Route bundle (A) from windrower through support (B) and access hole (C) in header frame alongside existing hose bundle (D) from header.
- 6. Remove cover on header electrical receptacle (E).
- 7. Push connector onto receptacle, and turn collar on connector to lock it in place.
- Attach cover to mating cover on windrower wiring harness.
- 9. Remove caps from hydraulic couplers. Clean if necessary.

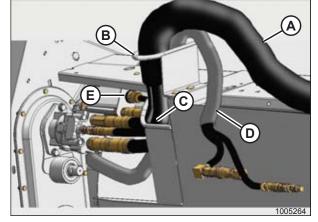


Figure 3.53: Hose and Electrical Bundle – 14-ft. and 16-Ft. Header Shown (18-Ft. Similar)

 Push hose connectors onto mating receptacles as shown until collars on receptacles snap into lock position.

NOTE:

Hoses attached to connectors not shown in illustrations at right.

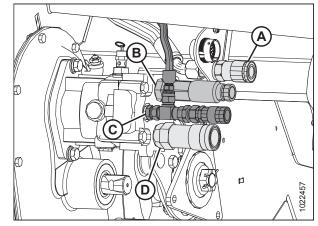


Figure 3.54: A40-D Header – 14-Ft. and 16-Ft. Header Shown (18-Ft. Similar)

- A Reel Pressure
- **B** Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

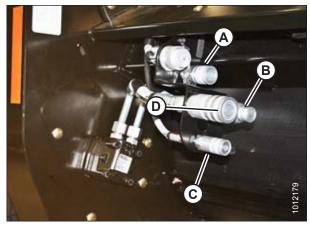


Figure 3.55: Grass Seed Header Hose Connectors

- A Reel and Auger Pressure
- **B** Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure
- 11. Route auger return and reel pressure hose bundle (A) from header to windrower, and position bundle above existing hose support (C) as shown.
- 12. Secure with three straps (D), and lower lever (B).

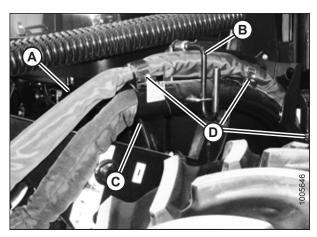


Figure 3.56: Auger Return and Reel Pressure Hose Bundle

13. Push auger/reel pressure (A) and auger/reel return (B) hose couplers onto mating receptacles on valve block until collar on receptacle snaps into lock position.

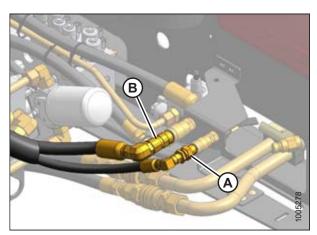


Figure 3.57: Auger/Reel Pressure and Auger/Reel Return Hose Couplers

14. Check hose routing at the reel motor.

NOTE:

The hose routing depends on which windrower model the header is being attached to. The header is factory-configured for M150, M155, M155*E4*, and M200 Windrowers.

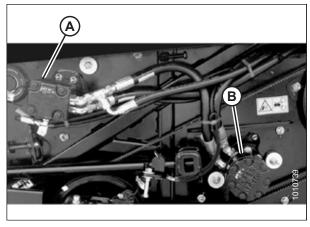


Figure 3.58: Factory Routing M150, M155, M155*E4*, and M200

A - Reel Motor

B - Auger Motor

15. For procedure to change hose routing for M205 Windrowers, refer to 3.4.6 Routing A40-D Hydraulic Drive Hoses, page 51.

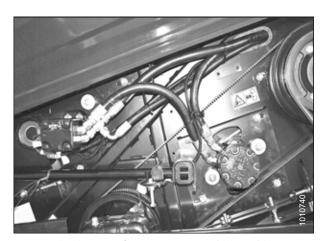


Figure 3.59: Modified Routing M100, M105, and M205

3.4.5 Configuring Reverser Valve Jumper Hose for A40-D

An optional reverser valve block (A) to reverse the header drive in the event of plugging may have been installed on M150, M155, and M200 Self-Propelled Windrowers. A jumper hose on this valve block has a specific routing for each model of auger header.

NOTE:

If a reverser valve block (A) has been installed, the jumper hose (B) must be routed for the correct header model. Do **NOT** operate the header unless hose is routed as shown.

NOTE:

ONLY for draper headers with conditioner installed and **ONLY** for the M150, M155, and M200 windrowers: CR is routed to port R4 (not shown) on reverser block. When switching from draper header to auger header, jumper hose (B) must be routed according to the header being operated to prevent draper header reel damage and improper operation.

To reroute jumper hose from draper header position to A40-D position, follow these steps:

- 1. Move left windrower platform to open position to expose hydraulic valve blocks.
- 2. Disconnect jumper hose (B) from 90 degree fitting (C) at port R4 on the reverser valve block (A).
- 3. Rotate 90 degree fitting (D) under reverser valve block so hose can be routed to port C2 at (C) as shown in Figure 3.62, page 51.

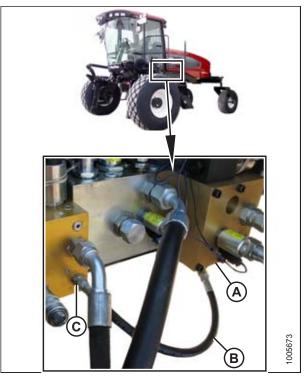


Figure 3.60: A40-D Hose (B) Position (A40-D on M200 Shown; M150, M155, and M155*E4* Similar)

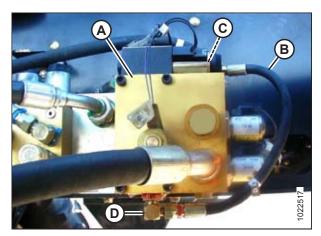


Figure 3.61: Draper Header Hose Position (M150 Shown; M200, M155, and M155*E4* Similar)

- 4. Remove cap from port C2 fitting (A) on the header drive valve block (B).
- 5. Connect jumper hose (C) to port C2 fitting (A) on header drive valve block (B).
- 6. Install previously removed cap onto 90 degree fitting in port R4 on reverser valve block (D).
- 7. Move left windrower platform back to normal operating position.

NOTE:

The draper header reverser function is suppressed unless hay conditioner is activated in Windrower Setup using the cab display module (CDM).

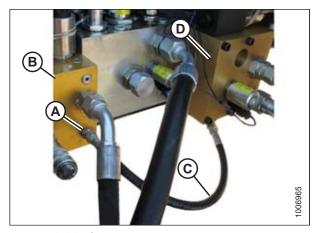


Figure 3.62: Connected Jumper Hose

3.4.6 Routing A40-D Hydraulic Drive Hoses

The A40-D Auger Header hydraulic drive hose routing depends on the windrower model to which the header is being attached.

A40-D Headers are factory-configured for M150, M155, M155*E4*, and M200 SP Windrowers as shown in Figure *3.67*, page *53*.

To route hoses for M100, M105, and M205 Windrowers, proceed as follows:

 Press screwdriver against latch in opening (A) and lift to open header left driveshield. Shield will latch at location (B) to stay open.

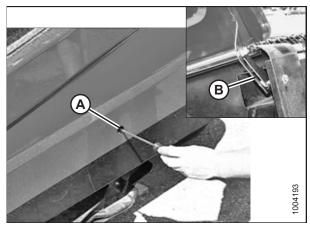


Figure 3.63: Left Driveshield

2. Disengage rubber latch (A), and open driveline shield (B).

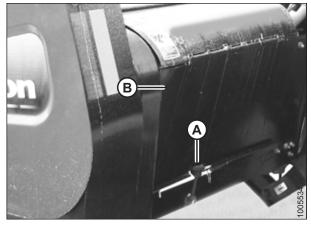


Figure 3.64: Driveline Shield

3. Loosen bulkhead nut (A) on auger and reel pressure coupler (B). This allows auger and reel pressure hose (C) to rotate freely.

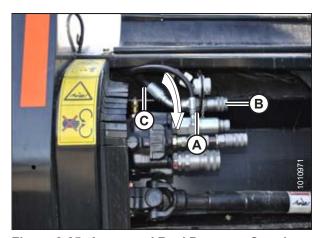


Figure 3.65: Auger and Reel Pressure Coupler and Hose – 14-Ft. and 16-Ft. Header Shown

Figure 3.66: Auger and Reel Pressure Coupler and Hose – 18-Ft. Header Shown

Hydraulic hose connections:

- 4. Disconnect hoses as follows:
 - a. Disconnect hose (A) from tee (B).
 - b. Disconnect tee (B) from reel motor upper port.
 - c. Disconnect hose (C) from reel motor lower port.
- 5. Cut cable ties (D) at locations shown in illustration.

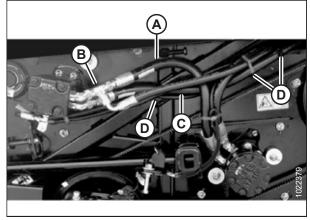


Figure 3.67: Factory Configuration (M150, M155, M155*E4*, and M200)

6. Reconnect hoses as follows:

- a. Reroute hose (E) behind hose (A) and (F) to hose (C) and connect tee (B) to lower port fitting.
- b. Reroute hose (C) above hose (E) and (F) and connect hose (C) to tee (B). Tighten hose (C).
- c. Loosen 45 degree fittings at both ports. This allows room for wrenches when tightening tee (B) to lower port.
- d. Connect hose (A) to upper port fitting as shown and check orientation of 45 degree fitting.

NOTE:

Ensure that hose (A) is routed in front of hose (C) and (E).

- e. Confirm orientation of upper port 45 degree fitting, back-off tee (B), and tighten upper port fitting in position determined. Tighten hose (A).
- f. Check orientation of lower port 45 degree fitting and tighten.
- g. Connect tee (B) to lower port 45 degree fitting and tighten.

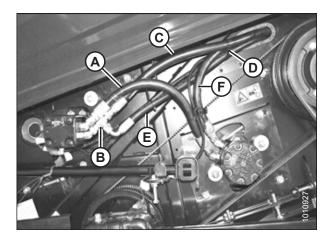


Figure 3.68: Adjusted Configuration (M100, M105, and M205)

Electrical harness routing:

7. Secure electrical harness (B), motor case drain hose (C), and hose (D) together with cable ties (A), as shown.

IMPORTANT:

Ensure there is at least 25 mm (1 in.) clearance between hose bundle (E) and knife drive timing belt (F).

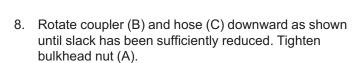


Figure 3.69: Adjusted Configuration (M100, M105, and M205)

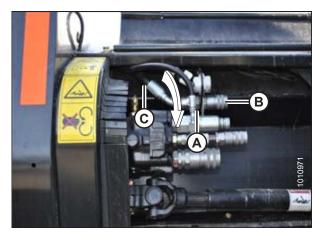


Figure 3.70: Auger and Reel Pressure Coupler and Hose – 14-Ft. and 16-Ft. Header Shown

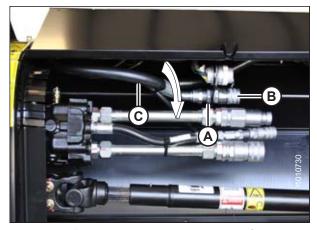


Figure 3.71: Auger and Reel Pressure Coupler and Hose – 18-Ft. Header Shown

- 9. Close driveline shield (B) and engage rubber latch (A).
- 10. Close driveshield before engaging header.

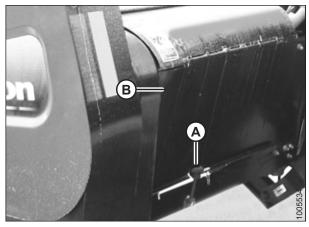


Figure 3.72: Driveline Shield

Detaching A40-D Header from M Series Windrower 3.5

A CAUTION

- Move left cab-forward platform to rear of windrower.
- Disconnect the two hydraulic hoses (A) and (B) from windrower valve(s).

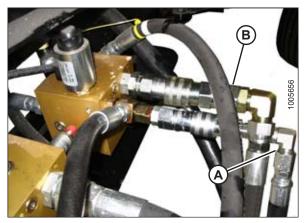


Figure 3.73: M100, M105

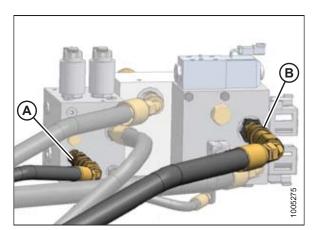


Figure 3.74: M150 with Reverser Valve (M155 and M155*E4* Similar)

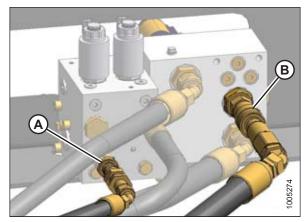


Figure 3.75: M150 without Reverser Valve (M155 and M155*E4* Similar)

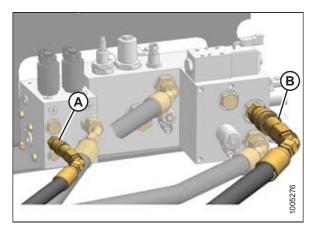


Figure 3.76: M200 with Reverser Valve

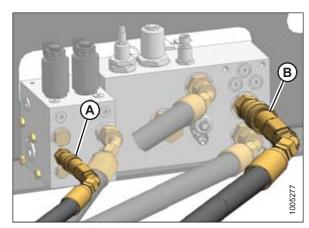


Figure 3.77: M200 without Reverser Valve

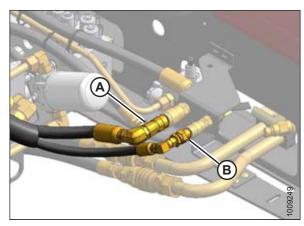


Figure 3.78: M205

- 3. Raise lever (B) on hose support (C), and undo three adjustable straps (D).
- 4. Move hose bundle (A) to store on header walkway.

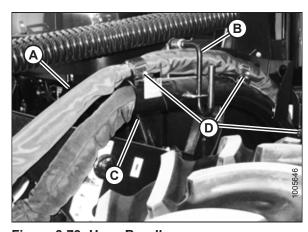


Figure 3.79: Hose Bundle

- 5. Install caps on connectors and hose ends (if equipped).
- 6. At the header, disconnect electrical connector by turning collar counterclockwise, and pulling connector to disengage.
- 7. Disconnect hoses from hydraulic motor, auger, and reel pressure hose.

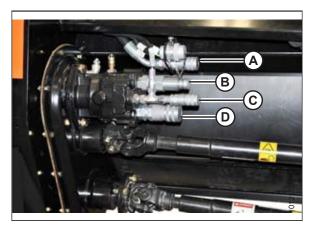


Figure 3.80: Standard Header

- A Reel/Auger Pressure
- **B** Knife and Conditioner Return
- C Case Drain
- D Knife and Conditioner Pressure

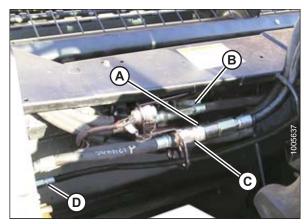


Figure 3.81: Grass Seed Header

- A Knife Return (Male Fitting at Header) (Hidden in this image)
- B Auger and Reel Pressure
- C Knife Pressure (Female Fitting at Header)
- D Case Drain
- 8. Move hose bundle (A) from header, and position on windrower left-hand side with hose ends in support (B) and under lever (C).
- 9. Rotate lever (C) clockwise, and push to engage bracket.
- 10. Position electrical harness through support (B), and attach cap to electrical connector.
- 11. Close driveline shield, and move windrower platform to closed position.
- 12. Check to ensure hoses and electrical harness clear tire.
- 13. Detach header from windrower. For instructions, refer to your windrower operator's manual.

Figure 3.82: Hose Bundle Storage

3.6 Transporting A40-D Header with Windrower

Refer to your windrower operator's manual for information about transporting headers when attached to a windrower. The orientation of the reflectors on the hazard light fixtures is dependent on the direction of travel for Dual Direction® windrowers.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

The amber reflectors **MUST** always face the direction of travel (C), and are changed as follows:

- 1. Lower header to the ground, shut off engine and remove key from ignition.
- Remove bolts (A) from reflector assembly (B), and remove assembly from light fixture. Retrieve spacers (nuts).

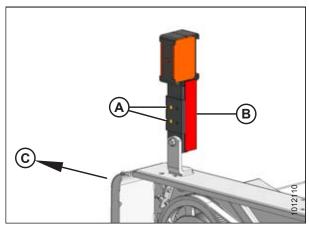


Figure 3.83: Engine-Forward Mode

3. Rotate reflector assembly (B), and reinstall ensuring amber side is facing direction of travel (C).

NOTE:

Ensure reflector assembly is installed as shown. Otherwise it will interfere with the driveshield in the open position.

- 4. Secure with bolts (A), spacers, and nuts.
- 5. Repeat above steps for other light.

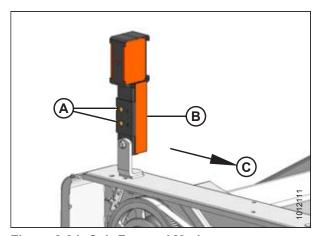


Figure 3.84: Cab-Forward Mode

3.7 Header Lift Cylinder Lock-Out Valves

Refer to your windrower operator's manual for information about the lift cylinder locks.

3.8 Operating Variables

Satisfactory function of the header in all situations requires making proper adjustments to suit various crops and conditions.

Correct operation reduces crop loss and allows cutting of more acres. As well, proper adjustments and timely maintenance will increase the length of service you receive from the machine.

The variables listed below and detailed on the following pages will affect the performance of the header. You will quickly become adept at adjusting the machine to give you the desired results.

Table 3.1 Header Adjustments

Variable	Refer to
Lean bar position	3.8.1 Setting Lean Bar, page 63
Auger speed	3.8.2 Adjusting Auger Speed, page 63
Reel speed	3.8.3 Adjusting Reel Speed, page 63
Auger position	3.8.4 Setting Auger Position, page 63
Reel position	3.8.5 Setting Reel Position, page 66
Tine aggressiveness adjustment	3.8.6 Setting Tine Aggressiveness, page 70
Cutting height	3.8.8 Setting Cutting Height, page 72
Header angle	3.8.7 Adjusting Header Angle, page 71
Header float	3.8.9 Checking/Adjusting Float – M Series, page 73
Feed pan / rock drop tine position	3.8.11 Setting Feed Pan and Rock Drop Tine Position, page 76
Roll gap	3.8.12 Adjusting Conditioner Roll Gap, page 77
Roll timing	4.13.11 Checking/Adjusting Roll Timing, page 181
Roll alignment	4.13.10 Checking/Adjusting Roll Alignment, page 180
Roll tension	3.8.13 Adjusting Conditioner Roll Tension, page 78
Forming shields	3.8.14 Positioning the Forming Shields, page 80
Tall crop dividers	3.13.1 Adjusting Tall Crop Dividers, page 93
Ground speed	3.12 Selecting Ground Speed, page 92

3.8.1 Setting Lean Bar

Use the lean bar adjustment to accommodate different crop heights. The lean bar (A) should strike the upper portion of the crop (roughly 2/3 of the crop height), leaning it away from the header, and exposing the stalks to the knife.

IMPORTANT:

To prevent structural damage to the header, do NOT operate with lean bar removed.

To extend or retract lean bar (A), reposition hardware in adjustment holes as required.

In crops over 1.52 m (5 ft.) high, an optional tall crop divider kit (MD #B4690) is available that includes lean bar extensions to raise the lean bar. For more information refer to 3.13.1 Adjusting Tall Crop Dividers, page 93.

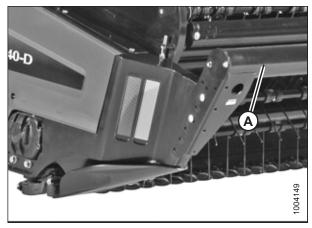


Figure 3.85: Auger Header Lean Bar

3.8.2 Adjusting Auger Speed

An A40 auger header features a hydraulic direct drive auger with operating speed range of 230 to 320 rpm, and is controlled from the operator's station on the self-propelled windrower.

For instructions, refer to your windrower operator's manual.

3.8.3 Adjusting Reel Speed

An A40 auger header features a hydraulic direct drive reel with operating speed ranges of 15 to 85 rpm (M150, M155 and M155*E*4, M1170, M1240) or 50 to 85 rpm (M100, M105, M200, M205), and is controlled from the operator's station on the self-propelled windrower.

For instructions, refer to your windrower operator's manual.

3.8.4 Setting Auger Position

CAUTION

To avoid personal injury, before servicing header or opening drive covers, follow procedures in .

Auger position has been factory-set, and should not normally require adjustment.

For nearly all conditions, the auger performs best when set as close as possible to the stripper bars without rubbing. This is especially important in grass and other crops that have a tendency to wrap.

Component wear may cause clearances to become excessive, resulting in feeding problems and uneven windrows.

To make adjustments to auger position, refer to these sections depending on your equipment:

- Adjusting Auger Fore-Aft Position, page 64
- Adjusting Vertical Position, page 65

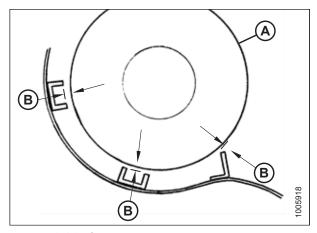


Figure 3.86: Clearance between Auger and Stripper Bars on the Auger Pan

A - Auger

B - Clearance 1-4 mm (1/32-5/32 in.)

NOTE:

In heavier crops it may be necessary to remove the front stripper bar for smoother crop flow across the auger. Refer to 4.12 Stripper Bar, page 161.

NOTE:

The auger should clear the stripper bars on the auger pan by approximately 1–4 mm (1/32–5/32 in.). Shimming the stripper bars may be required. Refer to 4.12 Stripper Bar, page 161.

Adjusting Auger Fore-Aft Position

CAUTION

- 1. Shut off engine and remove key.
- Open left endshield.
- 3. Loosen four nuts (A).
- 4. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust auger fore-aft position.
- 5. Tighten jam nut.
- 6. Tighten nuts (A).

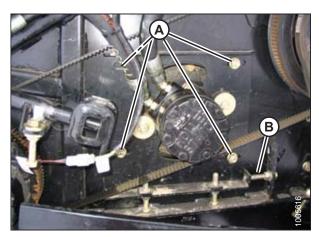


Figure 3.87: A40-D Left Side

- 7. Open right endshield.
- 8. Loosen four nuts (A).
- 9. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust auger fore-aft position.
- 10. Tighten jam nut.
- 11. Tighten nuts (A).
- 12. Close shields before engaging header.

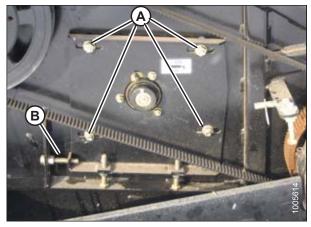


Figure 3.88: A40-D Right Side

Adjusting Vertical Position

CAUTION

- 1. Shut off engine and remove key.
- 2. Open left endshield
- 3. Loosen four nuts (A).
- 4. Loosen jam nuts on adjuster bolt (B), and turn bolt (B) to adjust auger vertical position.
- 5. Tighten jam nuts.
- 6. Tighten nuts (A).

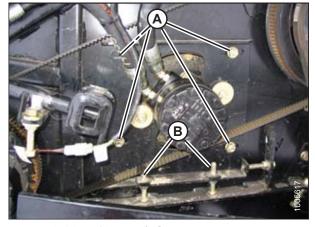


Figure 3.89: A40-D Left Side

- 7. Open right endshield.
- 8. Loosen four nuts (A).
- 9. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust auger fore-aft position.
- 10. Tighten jam nut.
- 11. Tighten nuts (A).
- 12. Close shields before engaging header.

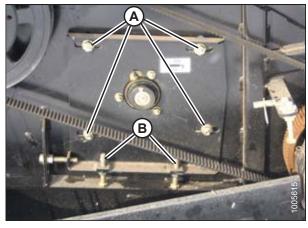


Figure 3.90: A40-D Right Side

3.8.5 Setting Reel Position

Reel position has been found to be a critical factor in achieving good results in adverse conditions. Reel position is factory-set for average straight standing crop. It can be adjusted both vertically and horizontally (fore-aft) for different crop conditions.

See table below for recommended reel position in unusual crop conditions:

Crop Condition	Reel Position
Crop down or lodged	Forward and down (also increase reel speed)
Wet or dead material collects on cutterbar and plugs knife	Back and down (close to guards)
Short crop	Back
Thick stemmed or heavy standing	Up and forward

To make adjustments to reel position, refer to the following sections:

- Adjusting Reel Fore-Aft Position, page 66
- Adjusting Reel Vertical Position, page 67

Adjusting Reel Fore-Aft Position

The reel fore-aft offset is factory-set to 816 mm (32-3/8 in.) as measured from the inside edge of the reel tube to the back frame member as shown in the illustration at right.

NOTE

The reel must be adjusted equally on both sides.

Figure 3.91: Measuring Reel Fore-Aft Offset

CAUTION

- 1. Shut off engine and remove key.
- 2. Open left endshield.
- 3. Loosen four nuts (A).
- 4. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust reel fore-aft position.
- 5. Tighten jam nut.
- 6. Tighten nuts (A).

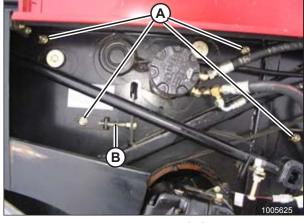


Figure 3.92: Auger Header Left Side

- 7. Open right endshield.
- 8. Loosen four nuts (A).
- 9. Loosen jam nut on adjuster bolt (B), and turn bolt (B) to adjust reel fore-aft position.
- 10. Tighten jam nut.
- 11. Tighten nuts (A).
- 12. Close driveshields before engaging header.

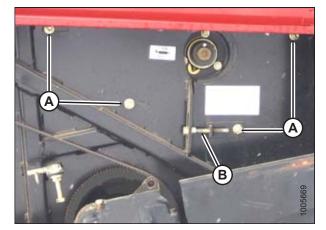


Figure 3.93: Auger Header Right Side

Adjusting Reel Vertical Position

CAUTION

- 1. Shut off engine and remove key.
- 2. Open left endshield.
- 3. Loosen four nuts (A).

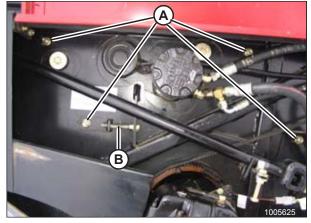


Figure 3.94: Auger Header Left Side

- 4. Loosen jam nuts on adjuster bolts (A), and turn bolts (A) to raise or lower reel.
- 5. Tighten jam nuts (A).

Figure 3.95: Auger Header Left Side

6. Tighten nuts (A).

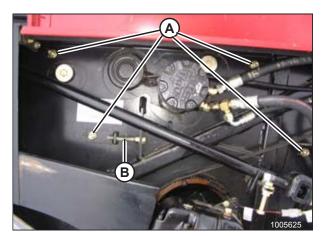


Figure 3.96: Auger Header Left Side

- 7. Open right endshield.
- 8. Loosen four nuts (A).

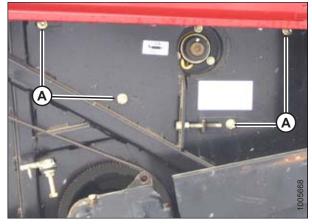


Figure 3.97: Auger Header Right Side

9. Loosen jam nuts on adjuster bolts (A), and turn bolts (A) to adjust reel vertical position.

NOTE:

The factory setting at forward adjuster bolt should be 12 mm (15/32 in.) lower than at rear adjuster bolt. If tine aggressiveness has changed, then the adjuster bolt offset may not equal factory settings. Always measure the adjuster bolt offset and maintain throughout the vertical adjustment.

10. Tighten jam nut.

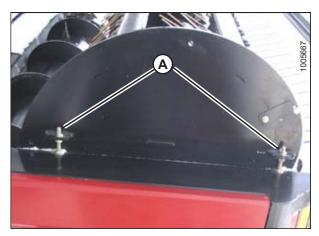


Figure 3.98: Auger Header Left Side

- 11. Tighten nuts (A).
- 12. Close shields before engaging header.
- 13. Check that the reel rotates freely.

NOTE:

Manually rotate reel, and ensure that tines do not contact header pan, otherwise damage to pan will result. If necessary, grind off excessive length from tine if tine length varies considerably. Remove any sharp edges or burrs from tine.

14. Check that reel is evenly adjusted.

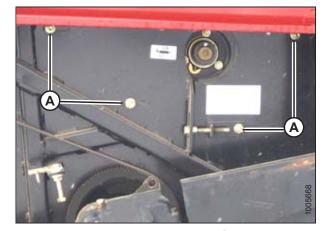


Figure 3.99: Auger Header Right Side

Checking Reel Tine to Header Pan Clearance

IMPORTANT:

The dimensions at right are provided as guidelines only. Tines may slightly contact the guards, but **NOT** the knife sections or the auger pan.

- Rotate reel slowly by hand, and check tine clearance at knife and pan. Flex tines to simulate crop-loaded position to ensure tine clearances to knife sections and auger pan are adequate for working conditions.
- 2. Check that reel rotates freely.

NOTE:

If there are a few reel tines that are touching the pan while the rest are at the correct height, trim the longer tines to match the rest. Be sure to adjust both sides of the reel.

Ensure that tines do **NOT** contact plastic header pan.

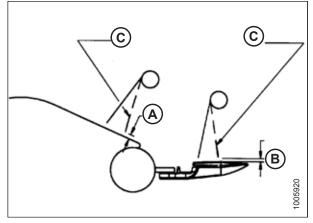


Figure 3.100: Reel Tine Clearance

- A 2-10 mm (2/25-2/5 in.)
- B 2 mm (2/25 in.) Minimum to Knife Section
- C Flex Fingers Back when Checking Clearance

3.8.6 Setting Tine Aggressiveness

CAUTION

- 1. Shut off engine and remove key.
- 2. Open right endshield.
- At right side of reel (cam end) ONLY, loosen four nuts (A).

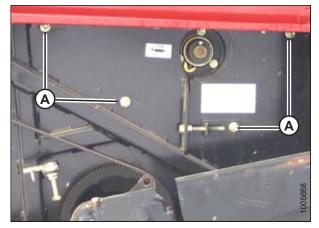


Figure 3.101: Auger Header Right Side

4. Loosen jam nuts on bolts (A), and turn bolts to rotate cam to desired position. Viewed from right side, rotate cam clockwise to obtain more aggressive tine action.

NOTE:

The factory setting at forward adjuster bolt should be 12 mm (0.47 in.) lower than at rear adjuster bolt. If tine aggressiveness has changed, then the adjuster bolt offset may not equal factory settings. Always measure the adjuster bolt offset and maintain throughout the vertical adjustment.

- 5. Tighten nuts (A), and jam nuts on bolts.
- Check that chain and/or belt have **NOT** become over-tight. Adjust to recommended tension if required.
- Check reel tine to header pan clearance to ensure that there is no contact between reel tines and the header pan. Refer to Checking Reel Tine to Header Pan Clearance, page 69.

Figure 3.102: Auger Header Right Side

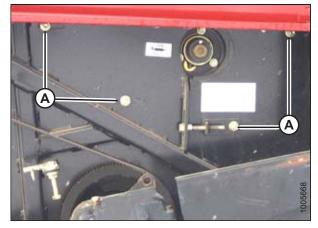


Figure 3.103: Auger Header Right Side

3.8.7 Adjusting Header Angle

Header angle can be hydraulically adjusted from the cab using hydraulic cylinder (A), without shutting down the windrower.

NOTE:

Some M100, M105, M150, and M155 models are equipped with a mechanical link. For instructions on adjusting header angle, refer to your windrower operator's manual.

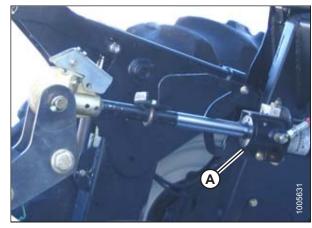


Figure 3.104: Header Angle Hydraulic Cylinder

3.8.8 Setting Cutting Height

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

- 1. Raise header, and engage header lift cylinder lock-out valves.
- 2. Remove pins (A) at each skid shoe or gauge roller.
- 3. Raise or lower skid shoe or gauge roller to desired position.
- 4. Replace pins (A).

Figure 3.105: Skid Shoe

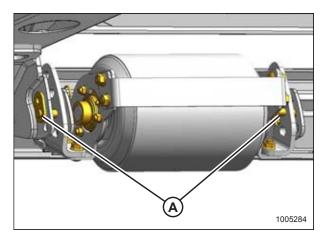


Figure 3.106: Gauge Roller

- 5. Check that skid shoes or gauge rollers are adjusted to the same position.
- 6. Check header float, and adjust if required. Refer to 3.8.9 Checking/Adjusting Float M Series, page 73 for more information.

NOTE:

The two inboard skid shoes are standard equipment. The inboard shoes can be moved to the outboard position OR outboard positions can be fitted with either gauge rollers or skid shoes.

3.8.9 Checking/Adjusting Float – M Series

The windrower float springs are **NOT** used to level the header.

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

To adjust the float, follow these steps:

- 1. Check float by grasping the lean bar and lifting. Lifting force should be 335–380 N (75–85 lbf) and should be approximately the same at both ends.
- If necessary, perform the following steps to adjust the float:
 - a. Raise header fully, shut down engine, and remove key.
 - b. Turn drawbolt (A) clockwise to increase float (makes header lighter) or counterclockwise to decrease float (makes header heavier).
 - c. Recheck the float.

Figure 3.107: Drawbolt – Top of Windrower Wheel Leg Member Shown

3.8.10 Checking/Adjusting Float – M1 Series

Header float on M1170 and M1240 Self-Propelled Windrowers is completely adjustable from the cab through the Harvest Performance Tracker (HPT).

The windrower float springs are **NOT** used to level the header.

Checking Float

DANGER

To avoid bodily injury or death from unexpected startup of the machine, always stop the engine and remove the key from the ignition before leaving the operator's seat for any reason.

- 1. Start the engine
- 2. Use the HEADER TILT switches (A) on the ground speed lever (GSL) to set the center-link to the mid-range position (5.0 on the Harvest Performance Tracker [HPT]).
- 3. Using the HEADER DOWN switch (B), lower header fully with lift cylinders fully retracted.
- 4. Turn engine off and remove the ignition key.
- 5. Grasp one end of the header and lift. Lifting force should be 335–380 N (75–85 lbf) and should be the same at both ends.

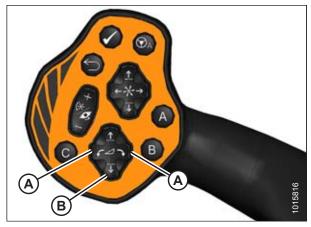


Figure 3.108: GSL

6. Restart the engine and adjust float as required. Refer to Setting the Float, page 74.

NOTE:

Increasing the float value on the HPT makes the header feel lighter.

Setting the Float

The float can be set for windrowing with the cutterbar on the ground or with the cutterbar off the ground (normally used with the draper header).

Cutterbar on Ground

The optimum float setting lets the header follow the contour of the terrain. Proceed as follows:

- Set center-link to mid-range position 5.0 on the Harvest Performance Tracker (HPT). Refer to windrower operator's manual.
- 2. Lower header until cutterbar is on the ground.

NOTE:

To minimize scooping rocks when operating at the flattest header angle, lower the header skid shoes. Refer to your header operator's manual.

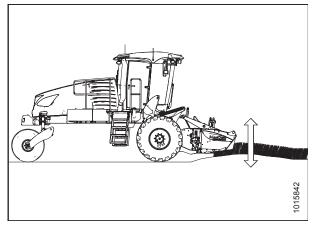


Figure 3.109: Header Float (Cutterbar on Ground)

- 3. Press rotary scroll knob (A) on HPT to display the QuickMenu system.
- 4. Rotate scroll knob (A) to highlight header float icon (B) and press scroll knob to select.

Figure 3.110: HPT Run Screen

- 5. Turn scroll knob (A) to highlight left (B) or right (C) float and press knob (A) to activate selection.
- 6. Rotate scroll knob (A) to adjust float setting and press knob when finished. Float is now set.

IMPORTANT:

Float adjustments of **1.0** (out of 10) change the header weight at the cutterbar by approximately **91 kg (200 lb.).** Adjust float in increments **0.05** to optimize field performance.

7. Use soft key 3 (D) to remove/resume float and deck position to previous setting for the attached header.

Figure 3.111: HPT Left/Right Float Settings

Removing and Restoring Float

Follow these steps to remove and restore the header float settings:

- Press rotary scroll knob (A) on Harvest Performance Tracker (HPT) to display the QuickMenu system or press F1 on the console.
- 2. Rotate scroll knob (A) to highlight header float adjust (B) and press scroll knob to select.

Figure 3.112: Run Screen – HPT Display

Press soft key 3 (A) to remove or restore the header float.

NOTE:

If the header float is active, the icon at soft key 3 will say REMOVE FLOAT; if header float has been removed, the icon will say RESTORE FLOAT.

Figure 3.113: Adjusting Float - HPT Display

3.8.11 Setting Feed Pan and Rock Drop Tine Position

The rear of the feed pan is adjustable up and down to raise or lower the feed pan and rock drop tines.

- · Lowering the feed-pan helps prevent plugging in heavy crop.
- Raising the feed-pan helps to form an even windrow in light crop.

WARNING

To avoid bodily injury or death from fall of raised machine, always lock-out lift cylinders before going under header for any reason.

- 1. Raise header fully, and engage safety props.
- 2. Stop engine and remove key.
- 3. Loosen nut (A) both sides, and align pointer (B) at each side of rock drop tine support with one of the slots (C) to match crop condition.

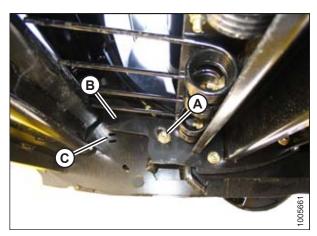


Figure 3.114: Rock Drop Tine Support

Crop Condition	Light	Normal	Heavy
Slot	Upper	Center	Lower

- 4. Tighten hardware on both sides.
- 5. Disengage header lift cylinder stops.

3.8.12 Adjusting Conditioner Roll Gap

The roll gap determines the amount of conditioning:

- To reduce conditioning, increase roll gap.
- · To increase conditioning, decrease roll gap.

The conditioner roll gap is factory-set at 6 mm (1/4 in.).

CAUTION

- 1. Loosen and back-off upper jam nut (A), on both sides of conditioner.
- 2. **To increase roll gap**, turn lower nut (B) clockwise to raise link, and increase the gauge (C) setting.
- 3. **To decrease roll gap**, turn lower nut (B) counterclockwise to lower link, and decrease the gauge (C) setting.
- 4. Tighten jam nuts (A), both sides.

Figure 3.115: Roll Gap Adjustment Gauge

- 5. Loosen bolt (A), and rotate cover (B) to expose access port (C).
- 6. Inspect space between roll bars at both ends of the rolls at access port (C).

IMPORTANT:

Roll timing and alignment are critical when the roll gap is decreased because

- · Conditioning is affected
- · The bars may contact each other
- 7. Check roll timing and alignment when reducing roll gap. Refer to:
 - 4.13.11 Checking/Adjusting Roll Timing, page 181
 - 4.13.10 Checking/Adjusting Roll Alignment, page 180
- 8. Close cover (B), and tighten bolt (A).

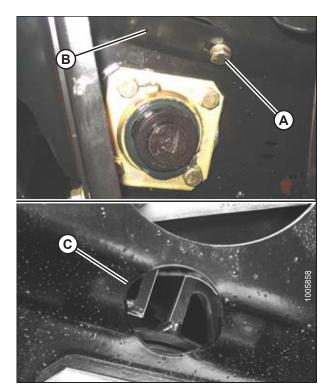
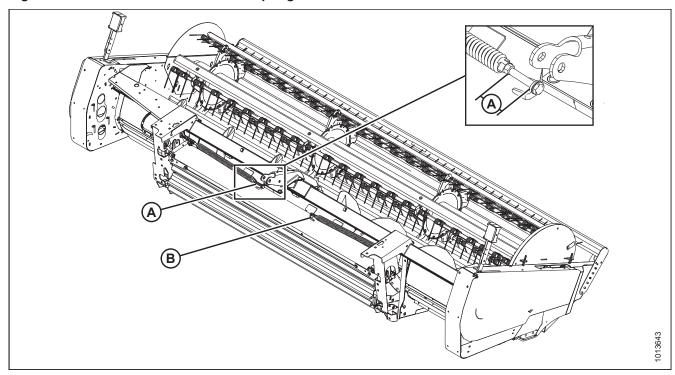



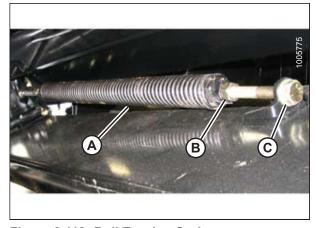
Figure 3.116: Conditioner Roll Access Port

3.8.13 Adjusting Conditioner Roll Tension

The roll tension (the force holding the rolls together) is factory-set, and is adjustable. There is a spring for each end of the roll.

Figure 3.117: Conditioner Roll Tension Springs

Table 3.2 Conditioner Roll Tension Factory Settings


Left spring (A)	81–91 mm (3-3/16 – 3-9/16 in.)
Right spring (B)	41–51 mm (1-5/8 – 2 in.)

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

- 1. Lower header fully.
- 2. Stop engine, and remove key.
- 3. To increase the roll tension, loosen jam nut (B) at spring insert, and turn spring drawbolt (C) clockwise to tighten the spring. Tighten jam nut (B).
- 4. To decrease the roll tension, loosen jam nut (B) at spring insert, and turn spring drawbolt (C) counterclockwise to loosen the spring. Tighten jam nut (B).

Revision A

Figure 3.118: Roll Tension Spring

3.8.14 Positioning the Forming Shields

WARNING

Keep hands and feet away from discharge opening. Keep everyone several hundred feet away from your operation. Never direct the discharge toward anyone. Stones or other foreign objects can be ejected with force.

The position of the forming shields controls the width and placement of the windrow. The decision on forming shield position (settings between 915–2346 mm [36–92 in.]) should be made based on the following factors:

- Weather conditions (rain, sun, humidity, wind)
- · Type and yield of crop
- · Drying time available
- Method of processing (green feed, bales, silage)

A wider windrow will generally dry faster and more evenly, resulting in less protein loss. Fast drying is especially important in areas where the weather allows only a few days to cut and bale. Refer to 3.14 Haying, page 96 for more information.

Where weather conditions permit or when drying is not critical, for example, when cutting for silage or green feed, a narrower windrow may be preferred for ease of pick up.

Positioning Side Deflectors

The position of the side forming shields controls the width and placement of the windrow.

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

To ensure windrow placement is centered with respect to carrier/drive wheels, adjust both side deflectors to the same hole position on the adjuster bar.

- Set forming shield side deflectors to desired width by repositioning adjuster bars as follows:
 - a. Remove lynch pin (A).
 - b. Move adjuster bar (B) to another hole.
 - c. Reinstall lynch pin (A).

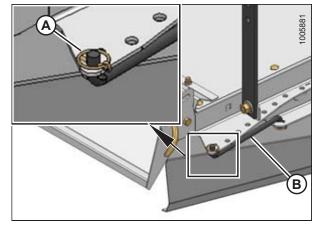


Figure 3.119: Forming Shield Side Deflector

2. If forming shield attachment is too tight or too loose, tighten or loosen nut (A) as required.

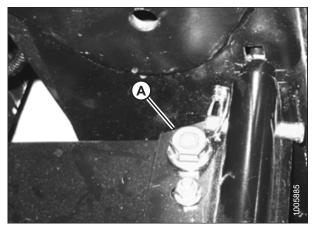


Figure 3.120: Forming Shield Adjustment Nut

Positioning Rear Deflector (Fluffer Shield)

The rear deflector (A) slows the crop exiting the conditioner rolls, directs the flow downward, and fluffs the material.

CAUTION

To prevent accidental movement of windrower, return ground speed lever (GSL) to Park, center steering wheel to lock, shut off engine, and remove key.

- 1. Shut off engine and remove key.
- For more crop control in light material, lower the deflector (A) by pushing down on one side of the deflector, and then on the other side. Locking handles (B) are located at either end of deflector, and may be loosened slightly.
- 3. For heavier crops, raise the deflector (A) by pulling up on one side, and then on the other side.

NOTE:

For even windrow formation, be sure the deflector is **NOT** twisted.

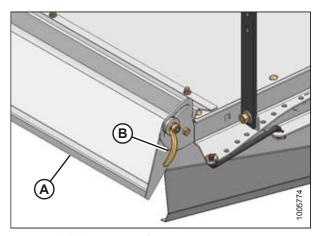


Figure 3.121: Rear Deflector

3.9 Recommended Operating Settings

These settings are intended as a starting point. Operators should fine-tune to crop and field conditions. Refer to Table *3.3, page 83*.

Table 3.3 Recommended Operating Settings

Field Conditions	ons				Operatir	Operating Variables	S		
Crop Condition Terrain Height acre)	Stubk Heig mm (i	ole ht n.)	Header Angle	Knife Speed (spm)	Reel Speed (rpm)	Auger Speed	Float	Feed Pan Position	Roll Gap mm (in.)
>3 Smooth 0	0		Steep	1600–1800	73–77	High	Normal	Lower slot	16 (5/8)
>3 Rocky 0	0		Shallow	1600–1800	73–77	High	Light	Lower slot	16 (5/8)
2–3 Smooth 0	0		Steep	1600–1800	70–75	Normal	Normal	Center slot	13 (1/2)
2–3 Rocky 0	0		Shallow	1600–1800	70–75	Normal	Light	Center slot	13 (1/2)
<2 Smooth 0	0		Steep	1600–1800	65–70	Low	Normal/ Heavy	Upper slot	10 (3/8)
<2 Rocky 0	0		Shallow	1600–1800	02-59	Low	Light	Upper slot	10 (3/8)
Lodged Smooth 0	0		Steep	1600–1800	73–77	High	Heavy	Variable	Refer to above
Lodged Rocky 0	0		Shallow	1600–1800	73–77	High	Light/ Normal	Variable	Refer to above
>2.5 Smooth 64–76 (2.5–3)	64–76 (2.5–3)		Steep	1850–1950	70–75	Normal/ High	Normal	Lower slot	10 (3/8)
>2.5 Rocky 64–76 (2.5–3)	64–76 (2.5–3)		Shallow	1850–1950	70–75	Normal/ High	Light	Lower slot	10 (3/8)
<2.5 Smooth 64–76 (2.5–3)	64–76 (2.5–3)		Steep	1850–1950	65–70	Low	Normal	Center slot	6 (1/4)
<2.5 Rocky 64–76 (2.5–3)	64–76 (2.5–3)		Shallow	1850–1950	65–70	Low	Light	Center slot	6 (1/4)
Lodged Smooth (2.5–3)	64–76 (2.5–3)		Steep	1850–1950	70–75	Normal/ High	Heavy	Variable	Refer to above
Lodged Rocky 64–76 (2.5–3)	64–76 (2.5–3)		Shallow	1850–1950	70–75	Normal/ High	Light/ Normal	Variable	Refer to above
>3 Smooth (6)	152 (6)		Steep	1700–1850	70–75	High	Normal	Lower slot	19 (3/4)

Table 3.3 Recommended Operating Settings (continued)

.0	Field Conditions				Operatin	Operating Variables	ω		
Stubble Terrain Height mm (in.)	ble jht in.)		Header Angle	Knife Speed (spm)	Reel Speed (rpm)	Auger Speed	Float	Feed Pan Position	Roll Gap mm (in.)
152 Rocky (6)	2	i	Shallow	1700–1850	70–75	High	Light	Lower slot	19 (3/4)
Smooth (6)	2.0		Steep	1700–1850	65–70	Low	Normal	Center slot	16 (5/8)
152 Rocky (6)	2		Shallow	1700–1850	65–70	Low	Light	Center slot	16 (5/8)
Smooth (6)	2		Steep	1700–1850	70–75	Normal/ High	Heavy	Variable	Refer to above
152 (6)	2		Shallow	1700–1850	70–75	Normal/ High	Light/ Normal	Variable	Refer to above
Smooth 0			Steep	1600–1800	70–75	High	Normal	Lower slot	25 (1)
Rocky 0			Shallow	1600–1800	70–75	High	Light	Lower slot	25 (1)
Smooth 0			Steep	1600–1800	60–65	Normal/ High	Normal/ Heavy	Center slot	25 (1)
Rocky 0			Medium	1600–1800	60–65	Normal/ High	Light	Center slot	25 (1)
Smooth 0			Steep	1600–1800	70–75	Normal/ High	Неаvу	Variable	Refer to above
Rocky 0			Medium	1600–1800	70–75	Normal/ High	Light/ Normal	Variable	Refer to above

Table 3.3 Recommended Operating Settings (continued)

Field Conditions	pu	itions				Operatir	Operating Variables	s		
Crop Condition (tons per acre)	Terrain		Stubble Height mm (in.)	Header Angle	Knife Speed (spm)	Reel Speed (rpm)	Auger Speed	Float	Feed Pan Position	Roll Gap mm (in.)
>3.5 Smooth	Smooth		0	Steep	1850–1950	73–77	High	Normal	Lower slot	10 (3/8)
>3.5 Rocky	Rocky		0	Shallow	1850–1950	73–77	High	Light	Lower slot	10 (3/8)
2–3 Smooth	Smooth		0	Steep	1850–1950	70–75	Normal	Normal	Center slot	6 (1/4)
2–3 Rocky	Rocky		0	Shallow	1850–1950	70–75	Normal	Light	Center slot	6 (1/4)
<2 Smooth	Smooth		0	Steep	1850–1950	65–70	Low/ Normal	Normal/ Heavy	Upper slot	6 (1/4)
<2 Rocky	Rocky		0	Medium	1850–1950	65–70	Low/ Normal	Light/ Normal	Upper slot	6 (1/4)
Lodged Smooth	Smooth		0	Steep	1850–1950	73–77	Normal/ High	Heavy	Variable	Refer to above
Lodged	Rocky		0	Medium	1850–1950	73–77	Normal/ High	Light/ Normal	Variable	Refer to above

3.10 Unplugging Conditioner and Knife

M1 Series windrowers are equipped with a header drive reversing function as standard equipment. M Series windrowers (including M150, M155, M155*E4*, and M200) can be equipped with the Header Drive Reverser kit (MD #B4656). This kit is not available for M100 or M105 windrowers.

On windrowers with this equipment installed, reverse the hydraulic flow to the knife, auger, reel, and conditioner hydraulic motors to help remove any plugged material from the header.

If reverser is not installed, proceed through the following instructions.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Stop forward movement of windrower, and shut down header.
- 2. Lift cutterbar about 300 mm (12 in.).
- 3. Back up about 1 m (3 ft.) while slowly engaging the header.
- 4. If plug does not clear, raise machine, apply windrower brake, shut off engine, and remove key.
- 5. Engage lift cylinder lock-outs.

A

WARNING

Exercise caution when working around the cutterbar. Blades are sharp and can cause serious injury. Wear heavy gloves when working around or handling knife.

- 6. Clean off cutterbar and area under reel by hand.
- Retrieve wrench (A) from storage inside the left drive compartment.

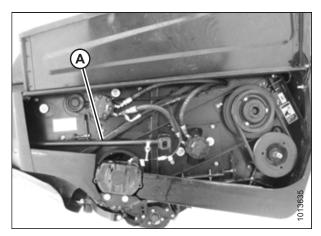


Figure 3.122: Wrench Location: A40-D

- 8. Use wrench on left end of primary driveshaft (A) to turn rolls forward until plug clears.
- 9. Return wrench to storage location, and secure in place with pin.

WARNING

Return unplug wrench to storage location, and close left side driveshield before restarting machine.

NOTE:

If plugging persists, refer to 7 Troubleshooting, page 195.

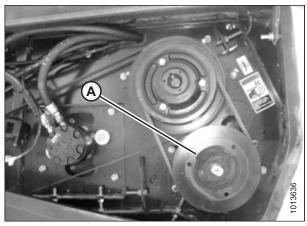


Figure 3.123: Primary Driveshaft

3.11 Grass Seed Special

The grass seed auger header has several features to adapt it to this special application. These features include:

- 3.11.1 Stub Guards and Hold-Downs, page 88
- 3.11.2 Special Auger Design for Grass Seed Special, page 88
- 3.11.3 Seven-Bat Reel, page 89
- 3.11.4 Auger Pan Extensions, page 89
- 3.11.5 Windrow Forming Rods, page 91

3.11.1 Stub Guards and Hold-Downs

The cutterbar is equipped with stub guards for effective cutting in tough grass crops. Refer to 4.7.7 Guards, page 118 for maintenance of these components.

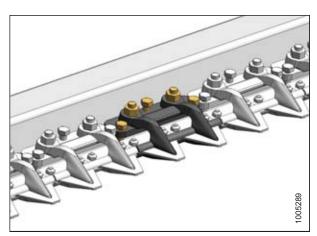


Figure 3.124: Cutterbar Stub Guards

3.11.2 Special Auger Design for Grass Seed Special

The center beaters and beater supports have been removed to reduce auger wrapping.

Figure 3.125: Grass Seed Auger

3.11.3 Seven-Bat Reel

A seventh bat is added to the reel body, for smoother reel action and better crop feed into the header.

Figure 3.126: Grass Seed Reel

3.11.4 Auger Pan Extensions

The grass seed header is equipped with adjustable auger pan extensions that allow adjustment of delivery opening to vary the windrow characteristics.

Adjusting Pan Extensions

The grass seed header auger pan extensions are factory-installed for the widest delivery. Adjust as follows:

1. Remove two bolts (A) and loosen bolt (B).

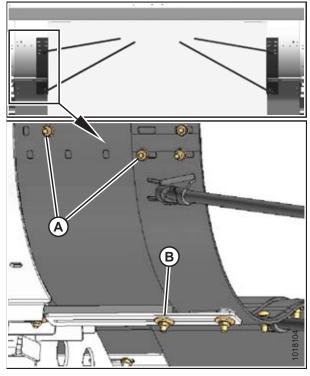


Figure 3.127: Pan Extension – Wide Setting

- 2. Slide pan extensions (C) and swath forming rods inboard to desired position and align holes.
- 3. Reinstall two bolts (A). Tighten bolts (A) and (B).
- 4. Repeat for opposite pan extension.

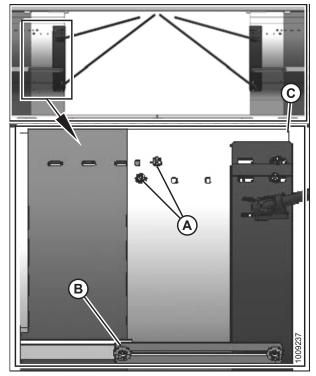
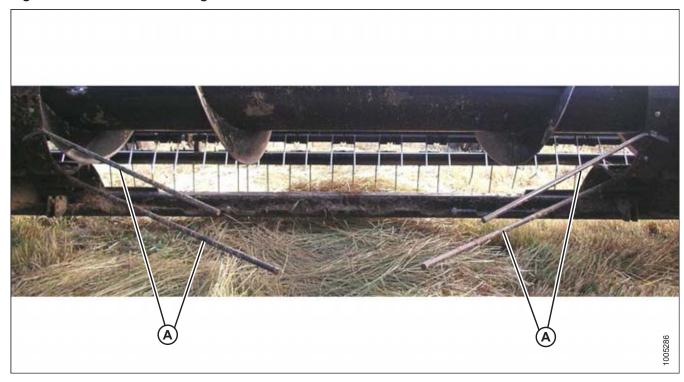


Figure 3.128: Pan Extension – Narrow Setting


OPERATION

3.11.5 Windrow Forming Rods

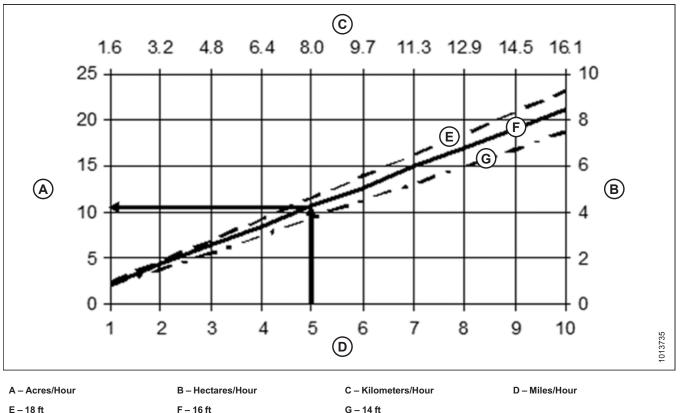
Forming rods are provided to assist in forming the narrow windrows preferred for this application.

Bend rods to modify the windrow shape. Use forming rods in conjunction with auger pan extensions to achieve the width and shape of windrows you desire.

Figure 3.129: Windrow Forming Rods

3.12 Selecting Ground Speed

A CAUTION


Reduce speed when turning, crossing slopes, or when travelling over rough ground.

Windrower ground speed SHOULD NOT EXCEED 13 km/h (8 mph). For most crop conditions a ground speed of 8 km/h (5 mph) has been found satisfactory.

Choose a ground speed that allows the knife to cut the crop smoothly and evenly.

The chart below indicates the relationship between ground speed and area cut for three header sizes. For example, at a ground speed of 8 km/h (5 mph) with a 16-foot header, the area cut would be approximately 4 hectares (10 acres) per hour.

Figure 3.130: Ground Speed and Area Cut

F - 16 ft

OPERATION

3.13 Tall Crop Dividers

The tall crop dividers attach to the ends of the header for clean crop dividing, and reel entry in tall crops. They can be easily adjusted to suit the crop, or removed when not required.

3.13.1 Adjusting Tall Crop Dividers

- 1. Loosen U-bolt (A).
- 2. Remove bolts (B), and reposition divider (C) to align with alternate hole location (D).
- 3. Reinstall bolts (B), and tighten.
- 4. Tighten U-bolt (A)

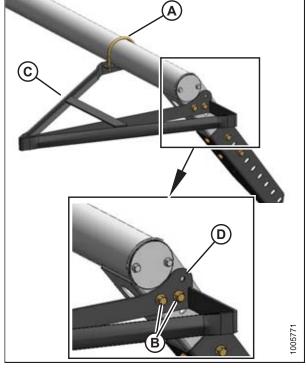


Figure 3.131: Tall Crop Divider

3.13.2 Removing Tall Crop Dividers

- Remove U-bolt (A) and bolts (B), and remove divider. Repeat for other divider.
- 2. Remove bolts attaching lean bar to header.

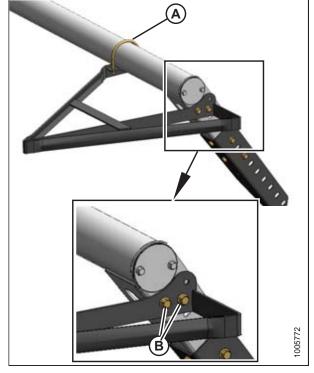


Figure 3.132: Tall Crop Divider

3. Remove bolts (A) attaching extensions (B) to lean bar (C), and remove extensions.

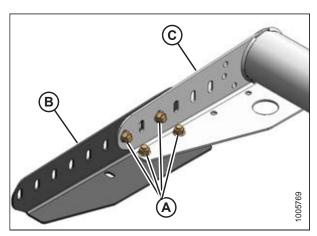


Figure 3.133: Lean Bar

OPERATION

 Reposition lean bar on header at desired height, and install existing carriage bolts (A)—two per side. Tighten bolts.

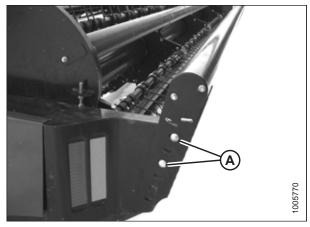


Figure 3.134: Lean Bar

3.14 Haying

3.14.1 Haying Tips

Curing

Curing crops quickly helps maintain the highest quality of crop material as 5% of protein is lost from hay for each day that it lays on the ground after cutting.

Leaving the windrow as wide and fluffy as possible results in the quickest curing. Cured hay should be baled as soon as possible.

Topsoil Moisture

Table 3.4 Topsoil Moisture Levels

Level	% Moisture	Condition
Wet	Over 45%	Soil is muddy
Damp	25–45%	Shows footprints
Dry	Under 25%	Surface is dusty

- On wet soil, the general rule of wide and thin does not apply. A narrower windrow will dry faster than hay left flat on wet ground.
- When the ground is wetter than the hay, moisture from the soil is absorbed by the hay above it. Determine
 topsoil moisture level before cutting. Use a moisture tester or estimate level.
- If ground is wet due to irrigation, wait until soil moisture drops below 45%.
- If ground is wet due to frequent rains, cut hay when weather allows and let the forage lie on wet ground until it dries to the moisture level of the ground.
- Cut hay will dry only to the moisture level of the ground beneath it, so consider moving the windrow to drier ground.

Weather and Topography

- Cut as much hay as possible by midday when drying conditions are best.
- Fields sloping south get up to 100% more exposure to the sun's heat than do north sloping fields. If hay is baled and chopped, consider baling the south facing fields and chopping those facing north.
- When relative humidity is high, the evaporation rate is low and hay dries slowly.
- If there is no wind, saturated air becomes trapped around the windrow. Raking or tedding will expose the hay to fresh, less saturated air.
- Cut hav perpendicular to the direction of the prevailing winds if possible.

Windrow Characteristics

Producing windrows with the recommended characteristics will achieve the greatest results. Refer to 3.8 Operating Variables, page 62 for instructions on adjusting the header.

OPERATION

Table 3.5 Recommended Windrow Characteristics

Characteristic	Advantage
High and fluffy	Enables airflow through windrow, which is more important to the curing process than direct sunlight
Consistent formation (not bunching)	Permits an even flow of material into the baler, chopper, etc.
Even distribution of material across windrow	Results in even and consistent bales to minimize handling and stacking problems
Properly conditioned	Prevents excessive leaf damage

Driving on Windrow

Driving on previously cut windrows that will not be raked can lengthen drying time by a full day. If practical, set forming shields to produce a narrower windrow that the machine can straddle.

NOTE

Driving on the windrow in high-yield crops may be unavoidable if a full width windrow is necessary.

Raking and Tedding

Raking or tedding speeds up drying; however, the resulting leaf loss may outweigh the benefits. There is little or no advantage to raking or tedding if the ground beneath the windrow is dry.

Large windrows on damp or wet ground should be turned over when moisture levels reach 40–50%. Hay should not be raked or tedded at moisture levels below 25%, however, or excessive yield loss will result.

Using Chemical Drying Agents

Hay drying agents work by removing wax from legume surfaces and enabling water to escape and evaporate faster. However, treated hay lying on wet ground will absorb ground moisture faster.

Before deciding to use a drying agent, carefully compare the relative costs and benefits for your area.

Maintenance and Servicing 4

The following instructions are provided to assist you in the use of the header. Detailed maintenance and service information is contained in the technical service manual that is available from your Dealer. A parts catalog is provided with your shipment.

Preparing for Servicing

CAUTION

To avoid personal injury, before servicing header or opening drive covers:

- Fully lower the header. If necessary to service in the raised position, always engage lift cylinder stops.
- · Place all controls in NEUTRAL or PARK.
- Stop engine and remove key.
- · Wait for all moving parts to stop.

4.2 Driveshields

This procedure is for opening and closing the driveshield over the conditioner drivelines.

To open driveline shield:

- 1. Disengage rubber latch (A).
- 2. Open shield (B).

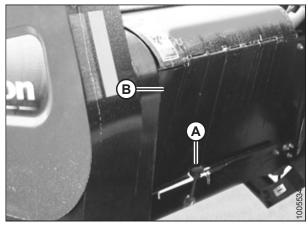


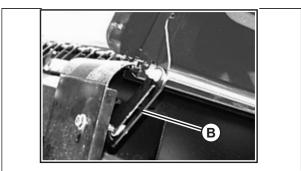
Figure 4.1: Driveline Shield

To close driveline shield:

- 3. Lower shield (B).
- 4. Engage rubber latch (A).

4.3 Endshields

This procedure is for opening and closing the endshields at each end of the machine.


To open endshields:

CAUTION

Ensure shield lock engages in the open position as shown at (B) before letting go of shield.

- 1. Insert screwdriver or equivalent into opening (A) at base of endshield and push to release latch.
- 2. Pull bottom and lift endshield until shield support (B) engages bolt. Check that support (B) is engaged before releasing hold on shield.

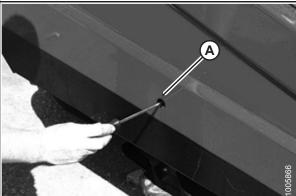


Figure 4.2: Screwdriver against Latch

To close endshields:

- 3. Grasp endshield at top and push slightly and move support (B) inboard to disengage.
- 4. Lower endshield to about 300 mm (12 in.) from closed position.
- 5. Release endshield so that it drops to closed position and shield will self-latch.

4.4 Maintenance Requirements

Periodic maintenance requirements are organized according to service intervals.

Regular maintenance is the best insurance against early wear and untimely breakdowns. Following the maintenance schedule will increase your machine's life.

When servicing the machine, refer to the specific headings in this section and use only fluids and lubricants specified in chart at back cover of this manual.

Log hours of operation, use the maintenance record, and keep copies of your maintenance records. Refer to *4.4.1 Maintenance Schedule/Record*, page 103.

If a service interval specifies more than one timeframe (e.g. "100 hours or Annually"), service the machine at whichever interval is reached first.

IMPORTANT:

Recommended intervals are for average conditions. Service the machine more often if operating under adverse conditions (severe dust, extra heavy loads, etc.).

CAUTION

Carefully follow all safety messages, refer to 1 Safety, page 1.

4.4.1 Maintenance Schedule/Record

			Se	lf-Pr	opel	led V	Vind	rowe	er He	adeı	<u> </u>					
М	aintenance Record	Action:		✓ - Check			♦ - Lubricate				▲ - Change					
	Hour meter reading															
	;															
Bre	ak-in		Refe	er to <i>4</i>	.4.2	Break	-In In	spec	tion, _l	page	104.					
100	Hours or Ann	ually											 			
✓		drive gearbox lubricant level														
√	Knife drive b	ox bolt torque														
✓		Inife drive box Lubricant level														
End	End of Season		Refer to 4.4.4 Storage, page 105.													
10 F	lours or Daily															
✓	Hydraulic Hos	es and Lines ²														
•		tions, guards, I hold-downs ²														
√	Knife	hold-downs ²														
✓	Kn	ife assembly ²														
✓	Knife drive bo First	x bolt torque - 10 hours only														
25 H	lours															
•		Knifehead														
50 F	50 Hours					_										
•	♦ Auger shaft bearings															
•	♦ Gauge roller bearings															
•																
•	Tine	e bar bearings														
•	Reels	shaft bearings														
Conditioner gearbox oil - First 50 hours only																

^{2.} A record of daily maintenance is not normally required, but is at the owner/operator's discretion.

	Self-Propelled Windrower Header													
M	aintenance Record	Action:	✓ - Check			♦ - Lubricate			▲ - Change					
٠	Conditioner un	iversal shafts												
٠	Roll pivots													
٠	♦ Conditioner shaft bearings													
٠	Knife drive cross-shaft													
•	Knife drive box oil - First 50 hours only													
100	1000 Hours or 3 Years													
•	Conditioner drive gearbox lubricant													
	Knife drive box lubricant													

4.4.2 Break-In Inspection

Hours	Item	Check	Reference
5	Hardware	Torque	8.1 Recommended Torques, page 203
5, 25, and 50	Knife drive belt	Tension	4.8.1 Header Knife Drive, page 137
10	Knife drive box mounting bolts	Torque	Mounting Bolts, page 129

Replace or tighten any missing or loose hardware. Refer to 8.1 Recommended Torques, page 203.

4.4.3 **Preseason Checks**

CAUTION

- Review the operator's manual to refresh your memory on safety and operating recommendations.
- Review all safety signs and other decals on the header and note hazard areas.
- Be sure all shields and guards are properly installed and secured. Never alter or remove safety equipment.
- Be sure you understand and have practiced safe use of all controls. Know the capacity and operating characteristics of the machine.
- Check the first aid kit and fire extinguisher. Know where they are and how to use them.

Perform the following checks at the beginning of each operating season:

- 1. Adjust tension on knife drive belt. Refer to 4.7 Cutterbar, page 114.
- 2. Check oil levels and lubricate bearings. Refer to the following sections:
 - 4.5.3 Knife and Gearbox Oil, page 111
 - 4.5.2 Lubrication Points, page 106
- 3. Perform all annual maintenance. Refer to 4.4.1 Maintenance Schedule/Record, page 103.

4.4.4 Storage

Do the following at the end of each operating season:

CAUTION

Never use gasoline, naphtha or any volatile material for cleaning purposes. These materials may be toxic and/or flammable.

CAUTION

Cover cutterbar and knife guards to prevent injury from accidental contact.

- 1. Clean the header thoroughly.
- 2. Store in a dry, protected place if possible. If stored outside, always cover header with a waterproof canvas or other protective material.
- 3. Raise header, and engage lift cylinder lock-outs.
- 4. If possible, block up the header to take weight off tires.
- 5. Repaint all worn or chipped painted surfaces to prevent rust.
- 6. Loosen drive belts.
- 7. Lubricate header thoroughly, leaving excess grease on fittings to keep moisture out of bearings. Apply grease to exposed threads, cylinder rods, and sliding surfaces of components. Oil knife components to prevent rust.
- 8. Check for worn components, and repair.
- 9. Check for broken components and order replacement from your Dealer. Attention to these items right away will save time and effort at beginning of next season.
- 10. Replace or tighten any missing or loose hardware. Refer to 8.1 Recommended Torques, page 203.
- 11. Remove divider rods (if equipped) to reduce space required for inside storage.

4.5 Lubrication

CAUTION

To avoid personal injury, before servicing header or opening drive covers, follow procedures in 4.1 *Preparing for Servicing, page* 99.

CAUTION

Refer to inside back cover for recommended greases.

Log hours of operation and use the Maintenance Checklist provided to keep a record of scheduled maintenance. Refer to *4.4.1 Maintenance Schedule/Record, page 103*.

4.5.1 Greasing Procedure

WARNING

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.

The greasing points are marked on the machine by decals showing a grease gun (A) and grease interval (B) in hours of operation.

Use the recommended lubricants specified in this manual at the inside back cover.

- 1. Wipe grease fitting with a clean cloth before greasing, to avoid injecting dirt and grit.
- 2. Inject grease through fitting with grease gun until grease overflows fitting, except where noted.
- 3. Leave excess grease on fitting to keep out dirt.
- 4. Replace any loose or broken fittings immediately.
- If fitting will not take grease, remove and clean thoroughly. Also clean lubricant passageway. Replace fitting if necessary.

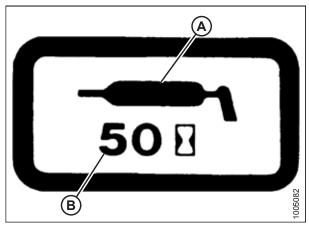


Figure 4.3: Grease Interval Decal

4.5.2 Lubrication Points

Lubrication requirements depend on the model of header that is being serviced. Refer to lubrication points for your specific model:

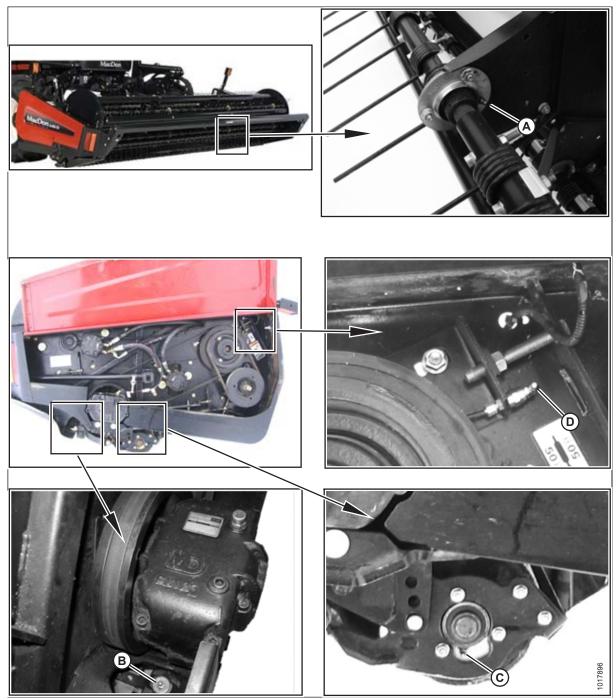

- Lubrication Points: Auger Header, page 107
- Lubrication Points: Hay Conditioner, page 109
- Lubrication Points: Drivelines, page 110

Lubrication Points: Auger Header

NOTE:

High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 4.4: A40-D, A40-DX Header Right Side


- A Knife Drive Bearing (1 Place) (50 Hours)
- C Auger Shaft Bearing (1 Place) (50 Hours)

- B Reel Shaft Bearing (1 Place) (50 Hours)
- D Knifehead Bearing (1 Place) (25 Hours)

NOTE:

High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 4.5: A40-D, A40-DX Header Left Side

- A Tine Bar Bearing (4 Places Each Tine Bar) (50 Hours)
- C Gauge Roller Bearings (2 Places) Both Sides if Installed (50 Hours)
- B Knifehead Bearing (1 Place) (25 Hours)
- D Knife Drive Bearing (1 Place) (50 Hours)

Lubrication Points: Hay Conditioner

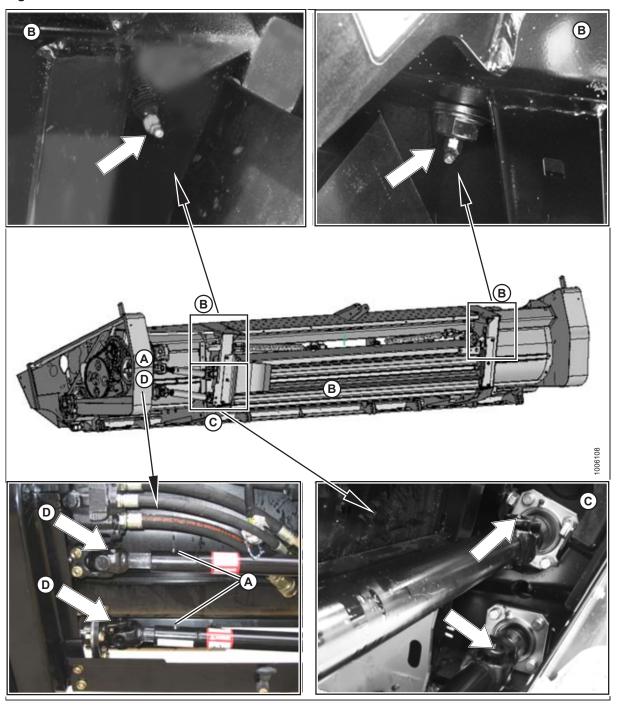
NOTE:

High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base.

Figure 4.6: Hay Conditioner

A - Roll Pivot (1 Place - Both Sides)

B - Roll Shaft Bearings (2 Places)


C - Roll Shaft Bearings (2 Places)

Lubrication Points: Drivelines

NOTE:

High Temperature Extreme Pressure (EP2) Performance With 1% Max Molybdenum Disulphide (NLGI Grade 2) Lithium Base. To prevent binding and/or excessive wear caused by knife pressing on guards, do **NOT** over-grease. If more than 6 to 8 pumps of grease gun are required to fill the cavity, replace the seal in the knifehead.

Figure 4.7: Drivelines

A - Driveline Shafts (2 Places) (50 hours) - NOTE: 10% Moly Grease Is Recommended For Driveline Shaft Slip Joints ONLY.

B - Cross Shafts (2 Places) (50 hours)


C - Driveline Universals (2 Places) (50 hours)

D - Driveline Universals (2 Places) (50 hours)

4.5.3 Knife and Gearbox Oil

Refer to the following illustration to identify the various locations that require lubrication. Refer to the inside back cover of this manual for proper oil.

Figure 4.8: Knife and Gearbox Oil

A - Oil Knife Daily Except in Sandy Soil (SAE 30)

B - Check Roll Gearbox (1 Place)⁴

C - Knife Drive Box (2 Places)³

^{3.} Check oil level with the header down on level ground.

^{4.} Header should be on the ground.

4.5.4 Installing Sealed Bearings

Follow these steps to install sealed bearings:

- 1. Clean shaft and coat with rust preventative.
- 2. Install flangette (A), bearing (B), second flangette (C), and lock collar (D).

NOTE:

The locking cam is only on one side of the bearing.

- 3. Install (but do **NOT** tighten) the flangette bolts (E).
- 4. When the shaft is correctly located, lock the lock collar with a punch.

NOTE:

The collar should be locked in the same direction the shaft rotates. Tighten the setscrew in the collar.

- 5. Tighten the flangette bolts.
- 6. Loosen the flangette bolts on the mating bearing one turn and retighten. This will allow the bearing to line up.

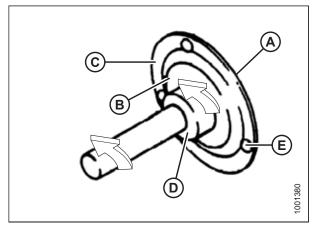


Figure 4.9: Sealed Bearing

4.6 Hydraulics

For hydraulics information about self-propelled windrower headers, contact your Dealer.

4.6.1 Servicing Header Hydraulics

Refer to your windrower operator's manual for hydraulic system maintenance procedures for self-propelled windrower headers.

4.6.2 Checking Hoses and Lines

Check hydraulic hoses and lines daily for signs of leaks.

WARNING

- Avoid high-pressure fluids. Escaping fluid can penetrate the skin causing serious injury. Relieve pressure before disconnecting hydraulic lines.
- Tighten all connections before applying pressure.
 Keep hands and body away from pin- holes and nozzles which eject fluids under high pressure.
- If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.
- · Use a piece of cardboard or paper to search for leaks.

Figure 4.10: Hydraulic Pressure Hazard

IMPORTANT:

Keep hydraulic coupler tips and connectors clean. Dust, dirt, water and foreign material are the major causes of hydraulic system damage. Do **NOT** attempt to service hydraulic system in the field. Precision fits require WHITE ROOM CARE during overhaul.

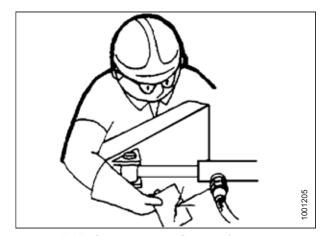


Figure 4.11: Cardboard to Search for Leaks

4.7 Cutterbar

CAUTION

To avoid personal injury, before servicing header or opening drive covers, follow procedures in .

WARNING

Exercise caution when working around the cutterbar. Blades are sharp and can cause serious injury. Wear heavy gloves when working around or handling knife.

WARNING

Keep hands clear of the area between guards and knife at all times.

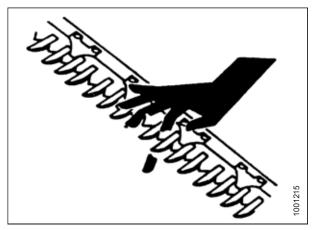


Figure 4.12: Safety around Equipment

4.7.1 Replacing Knife Section

Check daily that sections are firmly bolted to the knife back, and are not worn or broken. Replace as required. A worn or broken knife section can be replaced without removing knife from cutterbar.

WARNING

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under machine for any reason.

WARNING

Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

- 1. Turn off engine and remove key.
- 2. Stroke knife as required to expose knife sections.
- 3. Remove lock nuts (A), and lift section (B) off of bolts.

IMPORTANT:

Do **NOT** mix heavy and light knife sections on same knife.

- 4. Clean any dirt off of knife back, and position new knife section on bolts.
- 5. Secure with lock nuts, and tighten to required torque.

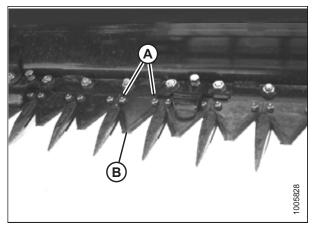


Figure 4.13: Knife Section

4.7.2 Removing Knife

WARNING

To avoid bodily injury or death from unexpected start-up or fall of raised machine, always stop engine, remove key, and engage safety props before going under machine for any reason.

WARNING

Stand to rear of knife during removal to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

- 1. Stop engine and remove the key from ignition.
- 2. Stroke the knife manually to its outer limit.
- 3. Clean the area around the knifehead.
- 4. Remove bolt (A).
- 5. Remove the grease zerk (B) from the pin.
- 6. Use a screwdriver or chisel in slot (C) to release the load on the knifehead pin.
- 7. Use a screwdriver or chisel to pry the pin upwards in the pin groove until the pin is clear of the knifehead.
- 8. Push the knife assembly inboard until it is clear of the output arm.
- 9. Seal the knifehead bearing with plastic or tape unless it is being replaced.
- 10. Wrap a chain around the knifehead and pull out the knife.

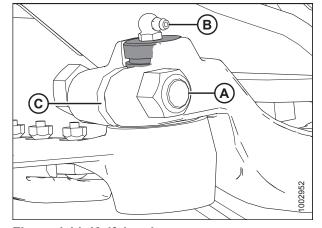


Figure 4.14: Knifehead

Installing Knife 4.7.3

WARNING

Stand to rear of knife during installation to reduce risk of injury from cutting edges. Wear heavy gloves when handling knife.

- 1. Slide the knife into place and align the knifehead with the output arm.
- 2. For ease of removing or installing knifehead pin, remove grease zerk from pin.
- 3. Install knifehead pin (A) through the output arm and into the knifehead. Tap the knifehead pin (A) down, make sure the pin is seated at the bottom of the knifehead.
- Set the groove (B) in the knifehead pin 1.5 mm (1/16 in.) above the output arm (C). Secure with 5/8 in. x 3 in. hex head bolt and nut (D), and torque to 217 Nm (160 lbf·ft).
- 5. Using a feeler gauge, check that the gap at (E) is 0.25 mm (0.01 in.).
- 6. Install the grease zerk (A) into the knifehead pin, and turn the grease zerk for easy access.

IMPORTANT:

Grease knifehead just enough to start a slight downward movement. Overgreasing will lead to knife misalignment which causes guards to overheat and drive systems to overload.

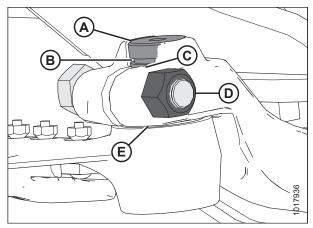


Figure 4.15: Knifehead

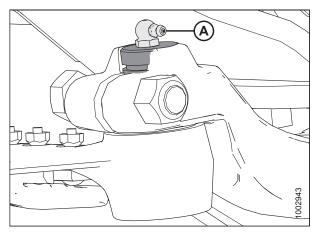


Figure 4.16: Knifehead

4.7.4 Removing Knifehead Bearing

- 1. Remove knife. Refer to 4.7.2 Removing Knife, page 115.
- Using a flat-ended tool (A) with approximately the same diameter as the plug (D), tap out the seal (B), bearing (C), plug (D), and O-ring (E) from the underside of the head.

NOTE:

The seal can be replaced without removing the bearing. When changing seal, check pin and needle bearing for wear. Replace if necessary.

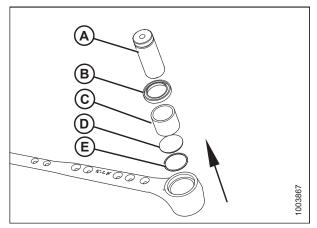


Figure 4.17: Bearing Removal

4.7.5 Installing Knifehead Bearing

1. Place O-ring (E) and plug (D) into knifehead.

IMPORTANT:

Install the bearing with the stamped end (the end with the identification markings) facing up.

- 2. Use a flat-ended tool with the same approximate diameter as the bearing (C), and push the bearing into the knifehead until the top of the bearing is flush with the step in the knifehead.
- 3. Install seal (B) into knifehead with the lip facing outwards.

IMPORTANT:

To prevent premature knifehead or knife drive box failure, ensure there's a tight fit between the knifehead pin (A) and the needle bearing, and also between the knifehead pin and the output arm.

4. Install the knife. Refer to 4.7.3 Installing Knife, page 115.

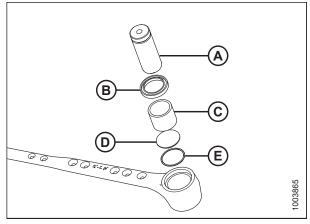


Figure 4.18: Knifehead Bearing Assembly

4.7.6 Removing Spare Knife from Storage

For double knife headers, a spare knife with knifehead may be stored inside the lean bar (A):

- The left knife is stored at the left end of the lean bar
- The right knife is stored at the right end of the lean bar

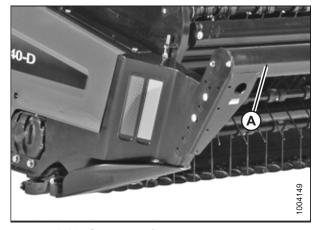


Figure 4.19: Spare Knife Location – Double Knife

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Remove bolts (A) from lean bar end cap.
- 2. Pull out end cap and plastic storage tube assembly with the knife inside.
- 3. Slide knife from storage tube.
- 4. Replace storage tube inside lean bar.
- 5. Reinstall bolts (A), and tighten.

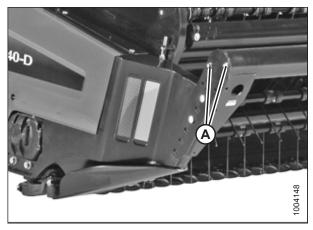
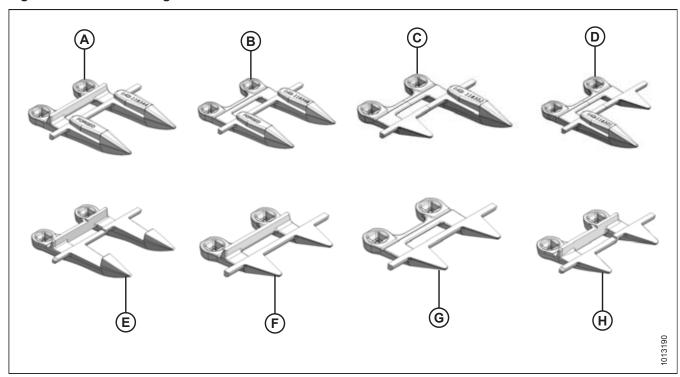


Figure 4.20: Spare Knife – Double-Knife

4.7.7 Guards

Guards protect the knife from damage from rocks and other objects and provide a surface for the knife to cut against, much like a pair of scissors. It is important that guards are adjusted properly.


Auger headers can be equipped with two types of guards: pointed or stub.

- Pointed guards are suitable for most standing crops and cutting conditions.
- Stub guards improve cutting performance in tough, stringy grass type crops, and crops that need to be cut close to the ground.

Guards are also designed slightly differently depending on where they are installed along the cutterbar:

- Outboard Left Located at left end of cutterbar. Does not have a ledger to allow for slight fore/aft motion from the knife drive box.
- Outboard Right Located at right end of cutterbar. Does not have a ledger to allow for slight fore/aft motion from the knife drive box (double-knife headers).
- Center Located at center of cutterbar on double-knife headers. Has a stepped ledger to allow for knife overlap.
- Drive End Located at the drive end of cutterbar, next to outboard guard. Similar to standard but does not have
 a ledger to allow for slight fore/aft motion from the knife drive box.
- Standard Standard guard used at all other locations.

Figure 4.21: Guard Configurations

- A Pointed Standard (MD #118344)
- C Pointed Right Outboard (MD #118302)
- E Pointed Center (MD #124338)
- G Stub Drive End (No Ledger) (MD #118347)

- B Pointed Drive End (No Ledger) (MD #118345)
- D Pointed Left Outboard (MD #118301)
- F Stub Standard (MD #118346)
- H Stub Center (MD #124775)

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar.

Aligning Guard

Check **DAILY** that guards are aligned to obtain proper shear cut between knife section and guard. Knife sections should contact shear surface of each guard.

1. Retrieve tool (A) from left-hand side of header.

Figure 4.22: Wrench Location

2. To adjust guard tips downward, position tool as shown at right, and push down.

Figure 4.23: Guard Tip - Downward Adjustment

3. To adjust guard tips upward, position tool as shown at right, and pull up.

NOTE:

If trouble is encountered cutting tangled, or fine-stemmed material, replace guards with stub guards. If material is tough to cut, install stub guards with top guard and adjuster plate. A stub guard conversion kit for the header is available from your Dealer.

Figure 4.24: Guard Tip - Upward Adjustment

Replacing Pointed Guards and Hold-Downs

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar. This procedure describes the replacement of pointed guards and hold-downs on single and double knife headers.

Pointed Standard Guard and Hold-Down

Follow this procedure to replace standard pointed guards and hold-downs on single- and double-knife headers, except the double knife center guard and hold-down. Refer to *Double Knife Pointed Center Guard and Hold-Down* in this section.

- 1. Stroke the knife so that knife sections are spaced midway between the guards.
- 2. Remove two nuts (A), and carriage bolts (B) that attach guard (C), and hold-down (D) to the cutterbar.
- 3. Remove the guard (C), and the hold-down (D).
- 4. Position new guard (B) on cutterbar, and install carriage bolts (B).
- 5. Install hold-down (D), and secure with nuts (A). Tighten nuts to 68 Nm (50 lbf·ft).
- 6. Check and adjust clearance between hold-down and knife. Refer to *4.7.8 Hold-Downs*, page 127.

Figure 4.25: Pointed Guards

IMPORTANT:

The second, third, and fourth outboard guards (A) on drive side of the header do **NOT** have a ledger (B) as shown for normal guard (C). Ensure that the proper replacement is installed.

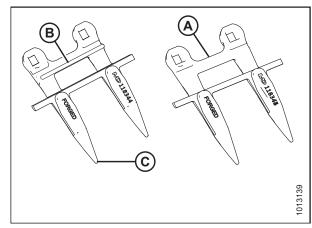


Figure 4.26: Pointed Guards

Double Knife Pointed Center Guard and Hold-Down IMPORTANT:

Ensure center guard (B) has offset (A) in ledgers and that hold-down accommodates overlapping knives.

NOTE:

Replace adjacent guards when replacing center guard.

- 7. Remove two nuts (A), and carriage bolts (B) that attach guard (C), adjuster bar (D) and hold-down (E) to the cutterbar.
- 8. Remove the guard (C), the hold-down (E) and adjuster bar (D).
- 9. Position new guard (C) on cutterbar, and install carriage bolts (B).
- 10. Install adjuster bar (D) and hold-down (E), and secure with nuts (A). Tighten nuts to 68–92 Nm (50–68 lbf·ft).
- 11. Check that cutting surfaces (A) of center and adjacent guards are aligned. Adjust as required as per *Aligning Guard*, page 120.
- 12. Check and adjust clearance between hold-down and knife. Refer to *4.7.8 Hold-Downs*, page 127.

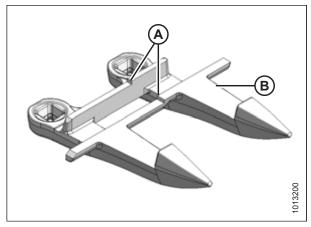


Figure 4.27: Pointed Center Guard

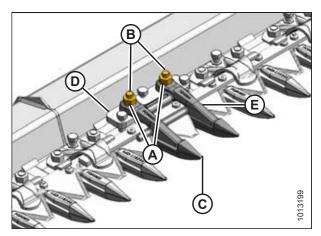


Figure 4.28: Center Guard

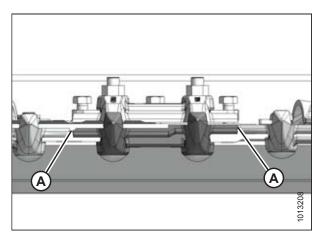


Figure 4.29: Guard Alignment

Replacing Pointed Center Guard on Double-Knife Header

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar. This procedure applies to the center guard where the two knives overlap on a double-knife header.

IMPORTANT:

Replace adjacent guards when replacing center guard.

IMPORTANT:

Ensure center guard (A) has offset (B) cutting surface.

IMPORTANT:

Ledger surfaces of center, and adjacent guards must be vertically aligned to avoid interference with knife sections.

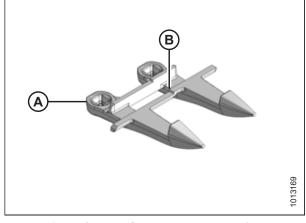


Figure 4.30: Center Guard: Double Knife

IMPORTANT:

Hold-down (A) must accommodate the two overlapping knives at center guard location on double-knife header. Ensure replacement is the correct part.

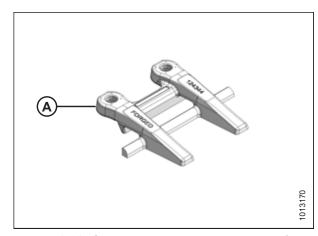


Figure 4.31: Center Hold-Down: Double Knife

- 1. Stroke the knife so that knife sections are spaced midway between the guards.
- 2. Remove two nuts (A), and bolts (B) that attach center guard (C), and hold-down (D) to cutterbar.
- 3. Remove guard (C), hold-down (D), and adjuster bar (E).
- 4. Position new guard (C) on cutterbar and install two 7/16 x 2-3/4 in. carriage bolts (B).
- 5. Position adjuster bar (E) and hold-down (D) on cutterbar and install nuts (A).
- 6. Torque nuts to 68-92 Nm (50-68 lbf·ft).
- 7. Check clearance between hold-down (D) and section. Refer to Adjusting Knife Hold-Down: Pointed Guard Double-Knife Header, page 128.



Figure 4.32: Pointed Center Guard

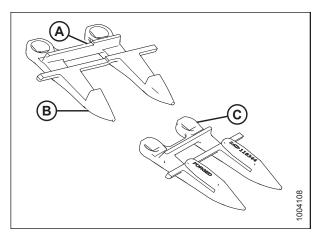


Figure 4.33: Pointed Guard Identification

- A Offsets
- B Center
- C Normal

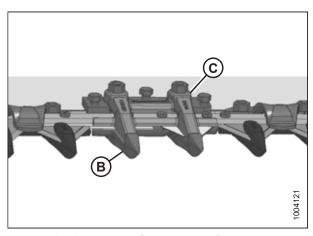


Figure 4.34: Pointed Guard Identification

Replacing Center Stub Guard on Double-Knife Header

Check daily that guards are firmly bolted to the cutterbar, and not worn or broken. Replace as required. A worn or broken guard can be replaced without removing knife from cutterbar. This procedure applies to the center guard where the two knives overlap on a double-knife header.

IMPORTANT:

Replace adjacent guards when replacing center guard.

IMPORTANT:

Ensure center guard (A) has offset cutting surface (B).

IMPORTANT:

Ledger surfaces of center, and adjacent guards must be vertically aligned to avoid interference with knife sections.

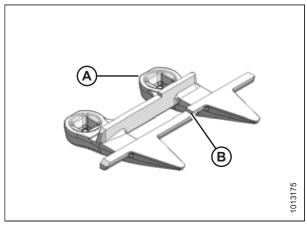


Figure 4.35: Center Guard: Double Knife

IMPORTANT:

Hold-down (A) must accommodate the two overlapping knives at center guard location on double-knife header. Ensure replacement is the correct part. Hold-down is actually an inverted stub guard (MD # 118346).

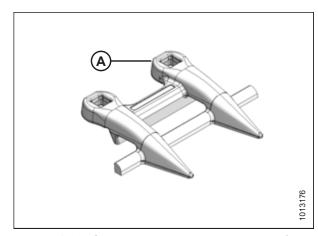


Figure 4.36: Center Hold-Down: Double Knife

- 1. Remove two nuts (A) and bolts that attach center guard (B) and top guide (C) to cutterbar.
- 2. Remove guard, top guide, and adjuster bar (D).

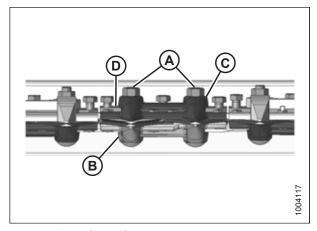


Figure 4.37: Stub Guard Replacement

IMPORTANT: Ensure center guard (B) has offset cutting surfaces. Refer to illustration.

Figure 4.38: Stub Guard Identification
A - Normal B - Center

NOTE:

Top guide (C) (which is an inverted stub guard) must accommodate the two overlapping knives at center guard location on double-knife header. Ensure replacement is correct part.

IMPORTANT:

Ledger surfaces of center, and adjacent guards must be vertically aligned to avoid interference with knife sections.

3. Position replacement guard (B), adjuster bar (D), top guide (C), and install bolts and nuts (A). Do **NOT** tighten.

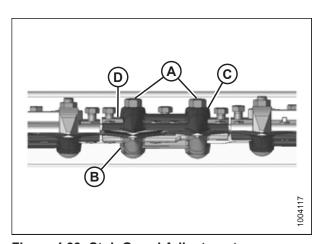
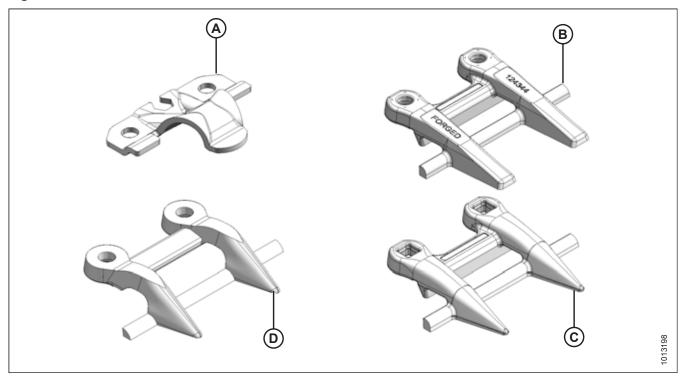


Figure 4.39: Stub Guard Adjustment

4. Check and adjust clearance between hold-down and knife. Refer to 4.7.8 Hold-Downs, page 127.


4.7.8 Hold-Downs

Hold-downs (also referred to as guides) keep the knife in contact with the guard cutting surface. It is important that the hold-downs are adjusted properly.

Hold-downs are designed to accommodate specific guard locations and guard types:

- Center Located at center of cutterbar on double-knife headers. Allows for knife overlap.
- Standard Used at all other locations.

Figure 4.40: Hold-Downs

- A Pointed Standard (MD #118162)
- C Stub Center Double Knife (MD #118346)

- B Pointed Center Double Knife (MD #124344)
- D Stub Standard (MD #034359)

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

Check daily that knife hold-downs are set to prevent knife sections from lifting off guards, but still permit the knife to slide without binding.

Adjusting Knife Hold-Down: Pointed Guard – Double-Knife Header

- 1. Torque nuts (A) to 46 Nm (35 lbf·ft).
- 2. Turn adjuster bolts (B). Using feeler gauge, clearance from hold-down to knife section (C) should be:
 - 0.1–0.4 mm (0.004–0.016 in.) at the guide tip (C)
 - 0.1–1.0 mm (0.004–0.040 in.) at rear of guide (D)
- 3. Torque nuts (A) to 72 Nm (53 lbf·ft).
- After adjusting all hold-downs, run header at a low engine speed, and listen for noise due to insufficient clearance. Insufficient clearance will also result in overheating of the knife and guards.

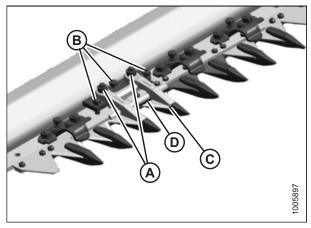


Figure 4.41: Knife Hold-Down – Double Knife

Adjusting Center Knife Hold-Down: Stub Guard – Double-Knife Header

- 1. Torque nuts (A) to 46 Nm (35 lbf·ft).
- 2. Turn adjuster bolts (B). Using a feeler gauge, clearance from hold-down to knife section should be:
 - 0.1–0.4 mm (0.004–0.016 in.) at the guide tip (C)
 - 0.1–1.0 mm (0.004–0.040 in.) at rear of guide (D)
- 3. Torque nuts (A) to 72 Nm (53 lbf·ft).
- After adjusting all hold-downs, run header at a low engine speed, and listen for noise due to insufficient clearance. Insufficient clearance will also result in overheating of the knife and guards.

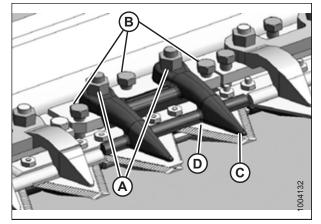


Figure 4.42: Stub Guard - Double Knife

4.7.9 Knife Drive Box

The knife drive box converts rotational motion from the windrower header driveshaft to reciprocating motion for the knife.

The heavy-duty oil bath knife drive box (A) uses tapered roller bearings on the input shaft and yoke for increased durability. The pulley and drive arm connections are straight splines with clamping bolts.

The oil level in the knife drive box (A) is checked with a dipstick that is incorporated into the breather (B).

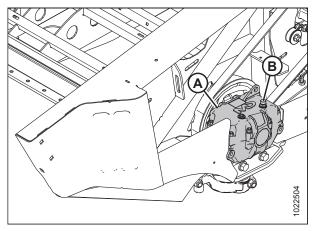


Figure 4.43: Knife Drive Box

Mounting Bolts

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

Check torque of four knife drive box mounting bolts (A) after the first 10 hours operation, and every 100 hours thereafter. Torque bolts to 270 Nm (200 lbf·ft). When tightening, start with the side mounting bolts.

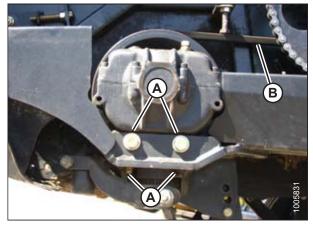


Figure 4.44: Knife Drive Box

Removing Knife Drive Box

- 1. Loosen knife drive belt (A), and slip off knife drive box pulley. Refer to the following sections:
 - Checking/Adjusting Timing Belt Tension on Left Side, page 138
 - Checking/Adjusting Timing Belt Tension on Right Side, page 142

Figure 4.45: Knife Drive Box

- 2. Stroke knife to its outer limit.
- 3. Clean area around knifehead.
- 4. Remove grease zerk (A) from knifehead pin (B).
- 5. Remove nut and bolt (C).
- Insert screwdriver in groove of pin (B), and pry up on pin to free knife. Pin does not have to be removed from arm.

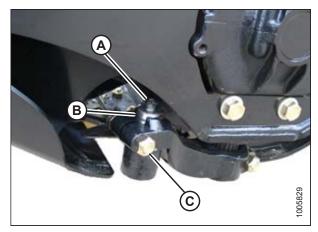


Figure 4.46: Knifehead

- 7. Remove bolt (A) from pitman arm.
- 8. Remove pitman arm (B) from knife drive box output shaft.

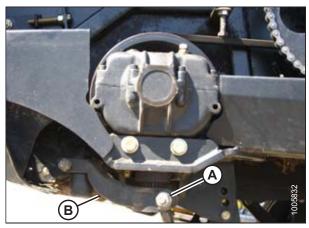


Figure 4.47: Pitman Arm

- 9. Remove bolts (A) attaching knife drive box to frame.
- 10. Remove knife drive box.

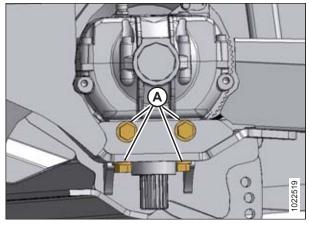


Figure 4.48: Knife Drive Box Bolts

Installing Knife Drive Box

1. Position knife drive box as shown, and install four bolts (A). Torque side bolts, and then torque bottom bolts to 270 Nm (200 lbf·ft).

IMPORTANT:

Use only Grade L9 bolts and flat washers.

2. Apply Loctite® #243 adhesive (or equivalent) in two bands (B) around shaft as shown, with one band at end of shaft, and one band approximately mid-way.

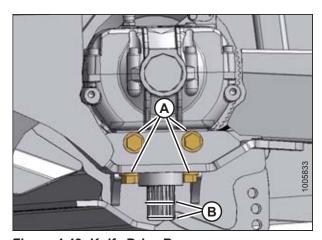


Figure 4.49: Knife Drive Box

- 3. Slide pitman arm (A) onto knife drive box output shaft.
- 4. Rotate knife drive box pulley to ensure pitman arm just clears frame to ensure proper placement on splines. Remove arm (A), and reposition on splines as required.
- 5. Rotate knife drive box pulley to locate pitman arm at furthest outboard position.

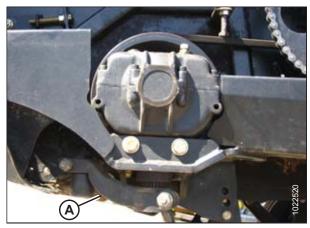


Figure 4.50: Pitman Arm

- 6. Slide pitman arm (C) up or down on shaft until it just contacts knifehead (B), (0.25 mm [0.010 in.]) gap.
- 7. Install bolt (E) and nut, and torque to 217 Nm (160 lbf·ft).
- 8. Align knifehead (B) with pitman arm (C).
- 9. Install knifehead pin (A) in pitman arm (C), and tap it down into the knifehead, ensuring pin is bottomed out in the knifehead.
- 10. Tap underside of the knifehead until the pin is flush with the upper face of the pitman arm (C).
- 11. Carefully adjust to achieve a 0.25 mm (0.010 in.) gap at (D) with the knife laying flat on the first few guards.

- 13. Tighten nut to 220 Nm (160 lbf·ft).
- 14. Replace knifehead pin (B).
- 15. Replace grease zerk (A) in pin.
- 16. Install drive belt onto knife drive box pulley and tighten. Refer to the following sections:
 - Checking/Adjusting Timing Belt Tension on Left Side, page 138
 - Checking/Adjusting V-Belt Tension on Left Side, page 137
 - Checking/Adjusting Timing Belt Tension on Right Side, page 142

Removing Pulley

- 1. Remove knife drive box. Refer to *Removing Knife Drive Box, page 130*.
- 2. Loosen nut and bolt (A) from pulley.
- 3. Remove pulley using a three-jaw puller.

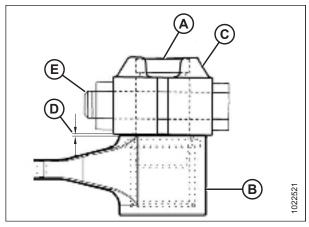


Figure 4.51: Knifehead

A - Knifehead Pin D - Gap: 0.25 mm (0.010 in.) B - Knifehead E - Bolt C - Pitman Arm

Figure 4.52: Knifehead

Figure 4.53: Knife Drive Box Pulley

Installing Pulley

- Remove any rust or paint from inner spline. For replacement parts, remove oil/grease with degreasing agent.
- 2. Apply Loctite® #243 adhesive (or equivalent) in two bands around shaft (A), with one band at end of spline, and one band approximately mid-way.

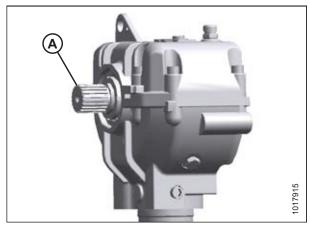


Figure 4.54: Knife Drive Box

3. Install pulley on shaft until flush with end of shaft, and secure with bolt (A) and nut. Torque bolts to 217 Nm (160 lbf·ft).

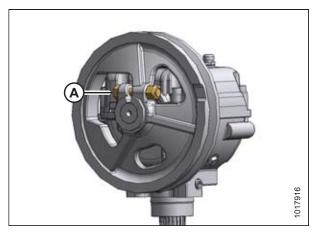


Figure 4.55: Knife Drive Box Pulley

Changing Knife Drive Box Oil

Change knife drive box lubricant after the first 50 hours operation, and every 1000 hours (or 3 years) thereafter.

To change lubricant, follow these steps:

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Raise header and then place a suitable container under the knife drive box drain to collect oil.

- 2. Engage header lift cylinder stops.
- 3. Remove breather/dipstick (A) and drain plug (B), and allow oil to drain.
- 4. Replace drain plug and add oil to required level. Use gear lubricant, SAE 85W-140, API Service Class GL-5, 2.2 liters (2.3 quarts).
- 5. Disengage lift cylinder stops.

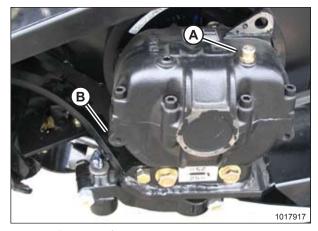


Figure 4.56: Knife Drive Box Breather

4.7.10 Adjusting Knife Timing

Double-knife auger headers require that the knives are properly timed to move in opposite directions. Knives moving in the same direction will result in unnecessary vibration.

To adjust the knife timing, follow these steps:

1. Remove the right-side knife drive belt (A), if it is not already removed.

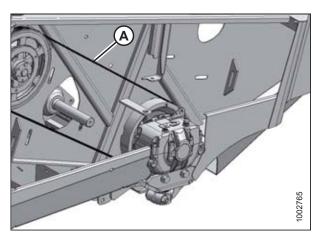


Figure 4.57: Right Knife Drive Belt

2. Rotate the left-side knife drive box driven pulley (A) clockwise until the left-side knife is at the center of the inboard stroke (moving towards center of header).

NOTE:

Center stroke is when the knife points are centered between guard points.

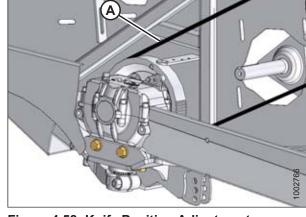


Figure 4.58: Knife Position Adjustment

3. Rotate the right-side knife drive box pulley counterclockwise until the right-side knife is at the center of the inboard stroke.

NOTE:

Secure knives to prevent movement when installing the belts.

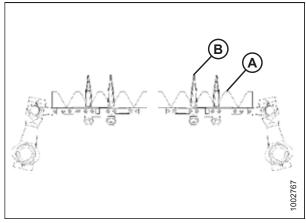


Figure 4.59: Knife Sections Centered Between **Guard Points** A - Knife Point B - Guard Point

4. Install the right-side knife drive box drive belt and tension.

A CAUTION

To maintain timing, knife drive box driver and driven pulleys must NOT rotate as the belt is tightened.

 Check that the timing belt (A) is properly seated in the grooves on both driver and driven pulley on the right side, and is tensioned correctly. The belt should be tensioned to a 14 mm (9/16 in.) deflection. This is achieved by applying 22–30 N (5–6.5 lbf) to the belt at midspan.

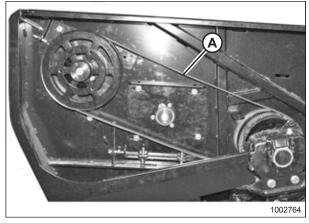


Figure 4.60: Timing Belt - Right Side

6. Check for correct knife timing by rotating the driveshaft (A) slowly with the unplugging wrench (B), and observe knives where they overlap at the center of the header.

IMPORTANT:

Knives must move in opposite directions, and must begin moving at exactly the same time.

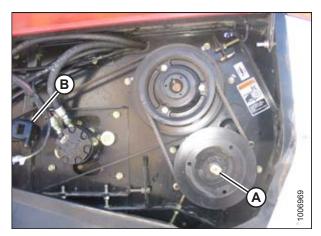


Figure 4.61: Knife Timing

- 7. If timing is correct, skip the remaining steps.
- 8. If timing is off, loosen right-side timing belt sufficiently to allow skipping the belt one or more teeth as required.
 - a. **If right knife LEADS left knife**, rotate right side driven pulley (A) clockwise.
 - b. **If right knife LAGS left knife**, rotate right driven pulley (A) counterclockwise.
 - c. Tighten right-side timing belt.

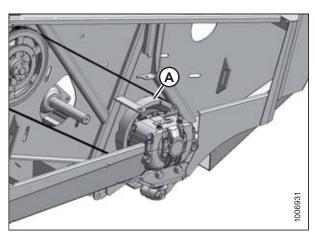


Figure 4.62: Knife Timing

4.8 Header Drive Systems

4.8.1 Header Knife Drive

The A40-D and A40-DX double-knife headers have a windrower-powered hydraulic motor that drives each knife on the header with two belt-driven knife drive boxes.

Checking/Adjusting V-Belt Tension on Left Side

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Turn off engine and remove key.
- 2. Open left endshield.
- 3. Apply a force of 35–50 N (8–12 lbf) on each belt at mid-span (D). Belt should deflect 4 mm (3/16 in.). If necessary, adjust as follows:
 - a. Loosen three nuts (A), and jam nut on adjuster bolt (B).
 - b. Turn adjuster bolt (B) to move pulley (C) to achieve required deflection at (D).
 - c. Tighten jam nut at (B), and three nuts (A).
- 4. Close endshield.

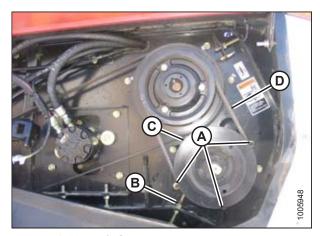


Figure 4.63: Left Side V-Belt

NOTE:

Readjust tension of new belts after about 5 hours of operation.

Removing Double V-Belts from Left Side

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Turn off engine and remove key.
- 2. Open left endshield.
- 3. Loosen three nuts (A), and jam nut on adjuster bolt (B).
- 4. Turn adjuster bolt (B) so that drive belts (C) can be slipped off pulleys (D) and (E).

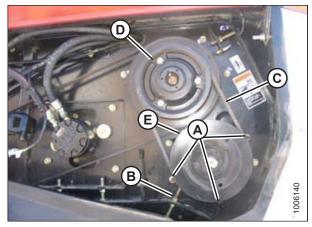


Figure 4.64: Left Side V-Belt

Installing Double V-Belts

IMPORTANT:

Belts are a matched set. Even if only one belt is damaged, replace both drive belts.

NOTE:

When installing new belt, never pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

1. Slip belts (A) onto pulleys (B) and (C).

IMPORTANT:

To prolong belt and drive life, do not overtighten belts.

- 2. Turn adjuster bolt (D) to move pulley (B) until a force of 35–50 N (8–12 lbf) applied at midspan to each belt deflects each belt (A) 4 mm (3/16 in.).
- 3. Tighten jam nut at (D), and three nuts (E).
- 4. Close endshield.

NOTE:

Readjust tension of a new belt after a short run-in period (about 5 hours).

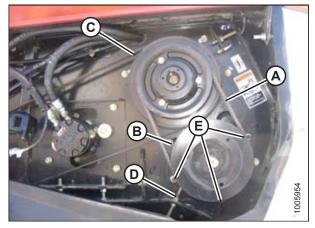


Figure 4.65: Left V-Belt

Checking/Adjusting Timing Belt Tension on Left Side

IMPORTANT:

To prolong belt and drive lift, do not overtighten belt.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Turn off engine and remove key.
- 2. Open left endshield.
- 3. Apply a force of 22-30 N (5-6.5 lbf) on belt (A) at midspan. Belt should deflect 14 mm (9/16 in.). If necessary, adjust as follows:
 - a. Loosen three nuts (B), and jam nut on adjuster bolt (C).
 - b. Turn adjuster bolt (C) to move pulley (D) until required tension is achieved.
 - c. Tighten jam nut at (C), and three nuts (B).
- 4. Close endshield.

NOTE:

Readjust tension of new belt after about 5 hours of operation.

Removing Timing Belt from Left Side

To remove the knife drive timing belt from the left side of an auger header, follow these steps:

- 1. Turn off engine and remove key.
- 2. Open shield on header's left side.
- 3. Loosen the three bolts (A) that lock the bottom drive pulley in place.
- 4. Loosen adjusting bolt (B); this will loosen the belts.

Figure 4.67: Gearbox Locking Bolts

- 5. Loosen the three bolts (A) that lock the pulley in position.
- 6. Loosen adjusting bolt (B); this will loosen the knife drive belt.
- 7. Remove the two belts (C) that drive the cross shaft.
- 8. Remove the knife drive timing belt (D) from the rear pulley.

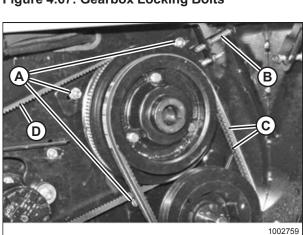


Figure 4.68: Belts Tension Bolts

9. Open the access panel (A) located beside the knife drive box. Line up the belt with the notch machined into the knife drive box pulley. Rotate the pulley with the belt in the notch until it is free for removal.

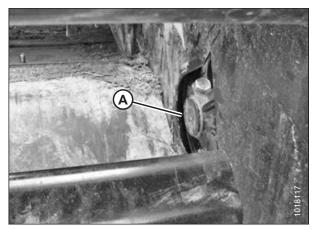


Figure 4.69: Knife Drive Belt Access Panel

NOTE:

Mark the ports and hoses and place port caps or plastic bags with tie wraps to prevent contamination.

10. To completely remove the belt, you will need to remove the two hoses (A) off of the auger drive motor, and disconnect the knife speed harness (B).

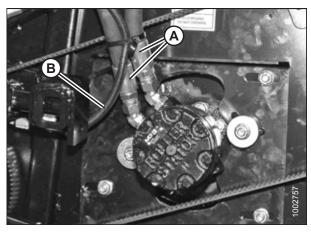


Figure 4.70: Auger Hoses

Installing Timing Belt on Left Side

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Route knife drive timing belt from inboard side of endsheet through opening (A).

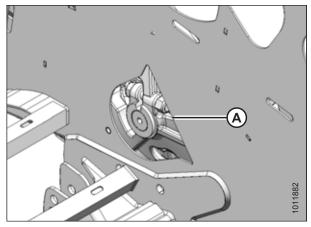


Figure 4.71: Left Side Inboard Opening

- 2. Position knife drive belt (A) onto knife drive box pulley (B).
- 3. Route knife drive belt (A) onto knife drive pulley (C).
- 4. Turn adjuster bolt (D) to move pulley (C) until a force of 22–30 N (5–6.5 lbf) deflects belt 14 mm (9/16 in.) at knife drive belt midspan (A).

IMPORTANT:

To prolong belt and drive life, do not overtighten belts.

NOTE:

When installing new belt, never pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

- 5. Tighten adjuster bolt jam nut (A), and three nuts (B) on knife drive pulley.
- 6. Reconnect hoses onto hydraulic motor (C).
- 7. Install knife drive V-belts. Refer to *Installing Double V-Belts*, page 138.

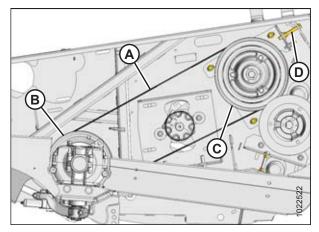


Figure 4.72: Left Side Timing Belt

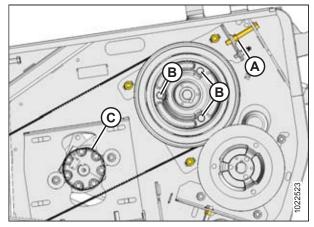


Figure 4.73: Left Side Timing Belt

- 8. Install cover (B) in endsheet and secure with bolt (A).
- Close endshield.

NOTE:

Readjust tension of a new belt after a short run-in period (about 5 hours).

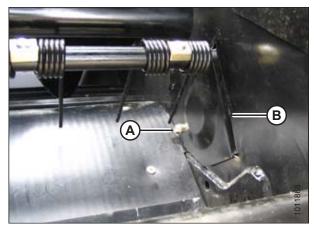


Figure 4.74: Left Side Inboard Cover

Checking/Adjusting Timing Belt Tension on Right Side

IMPORTANT:

To prolong belt and drive life, do not overtighten belt.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Turn off engine and remove key.
- Open right endshield.
- Apply a force of 22–30 N (5–6.5 lbf) on belt (D) at midspan. Belt should deflect 14 mm (9/16 in.). If necessary, adjust as follows:
 - a. Loosen three nuts (A), and jam nut on adjuster bolt (B).
 - b. Turn adjuster bolt (B) to move pulley (C) until required tension is achieved.
 - c. Tighten jam nut at (B), and three nuts (A).
- 4. Close endshield.

NOTE:

Readjust tension of new belt after about 5 hours of operation.

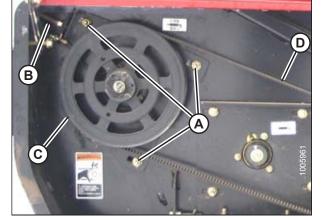


Figure 4.75: Right Side Timing Belt

Removing Timing Belt from Right Side

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Remove bolt (A) and remove cover (B) in right endsheet.



Figure 4.76: Right Inboard Cover

- 2. Open right endshield.
- 3. Loosen three nuts (A), and jam nut on adjuster bolt (B).
- 4. Turn adjuster bolt (B) so that knife drive belt (C) can be slipped off pulley (D).
- 5. Remove belt (C) from pulley (E) and remove belt through hole in endsheet.

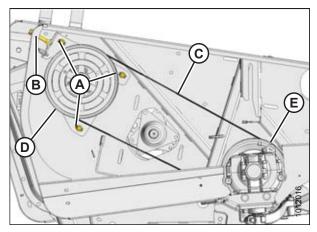


Figure 4.77: Right Timing Belt

Installing Timing Belt on Right Side

A CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

1. Route knife drive timing belt from inboard side of endsheet through opening (A).

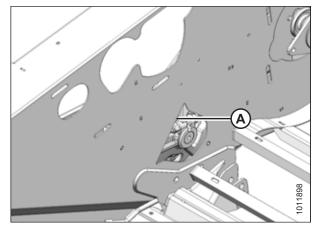


Figure 4.78: Right Side Inboard Opening

Position belt (C) onto knife drive box pulley (E) and knife drive pulley (D) as shown.

IMPORTANT:

To prolong belt and drive life, do not overtighten belts.

NOTE:

When installing new belt, **NEVER** pry belt over pulley. Be sure adjusting screw is fully loosened, then tension belt.

- 3. Turn adjuster bolt (B) to move pulley (C) until a force of 22–30 N (5–6.5 lbf) deflects belt (C) 14 mm (9/16 in.) at midspan.
- 4. Tighten jam nut at (B), and three nuts (A).
- 5. Install cover (B) in endsheet at knife drive box and secure with bolt (A).
- 6. Close endshield.

NOTE:

Readjust tension of a new belt after a short run-in period (about 5 hours).

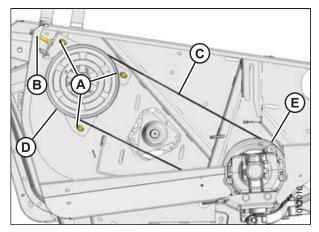


Figure 4.79: Right Timing Belt

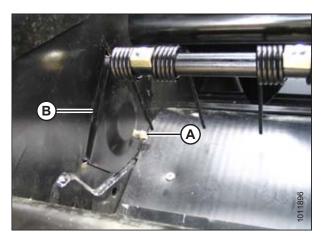


Figure 4.80: Right Side Inboard Cover

4.8.2 Header Reel Drive

The reel drive gearbox is a sealed, factory-assembled unit on an A40-D and A40-DX header. The reel drive gearbox requires no scheduled maintenance, but if service is required, see your Dealer.

4.8.3 Header Auger Drive

The auger on an A40-D and A40-DX header is driven directly from a hydraulic motor that is powered by the windrower hydraulics.

4.9 Reel Tines and Tine Bar Bearings

Separate procedures are required to replace reel tines, depending on their location on the reel. Refer to the following topics for these procedures:

- 4.9.1 Replacing Tine and Bearing: Cam End Disc #1, page 146
- 4.9.2 Replacing Tine and Bearing: Disc #2, page 150
- 4.9.3 Replacing Tine and Bearing: Center Section X, page 154
- 4.9.4 Replacing Tine and Bearing: Opposite Cam Section Y, page 156
- 4.9.5 Replacing Tine: Tine Bar Extension Section Z, page 158

IMPORTANT:

Keep reel tines in good condition. Straighten or replace as required.

4.9.1 Replacing Tine and Bearing: Cam End – Disc #1

NOTE:

Apply a light coating of anti-sieze compound to tine tube connections and all bolts prior to reassembly.

Replace tines and bearing at disc #1 (A) as follows:

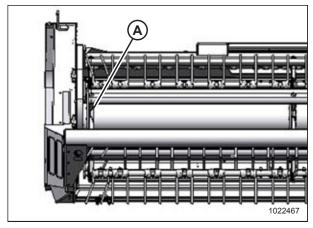


Figure 4.81: Cam End Disc

 Loosen bolt on cover (A), and slide cover to expose hole in cam disc. Rotate reel, and align bearing with hole.

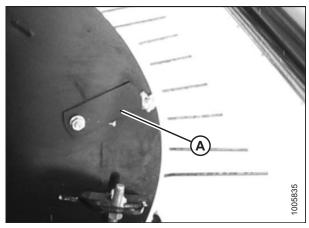


Figure 4.82: Cam Disc

- 2. Remove cam follower bearing bolt (A), bearing (B), and nut.
- 3. Disengage cam arm (C) from the cam track with a pry bar.
- 4. Remove flangette mounting bolts (D).

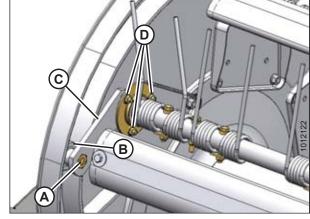


Figure 4.83: Cam Follower

5. Remove nuts (A), keepers (B), and shoulder bolts (C) that connect cam arm (D) and end tines (E) to tine bar.

IMPORTANT:

Tine attachment hardware and configuration may vary between Tine Bar Type A and Tine Bar Type B. Identify locations so that tine hardware will be reinstalled at same locations. Both Tine Bar Type A and Tine Bar Type B configurations are required to stagger tines on the reel bat and ensure all crop is picked up.

6. Position end of tine bar clear of cam disc, and remove cam arm assembly (D), complete with bearing assembly.

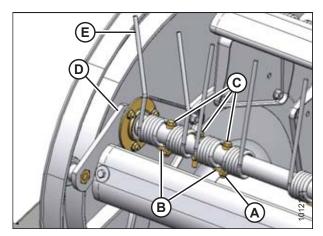


Figure 4.84: Tine Bar Type B

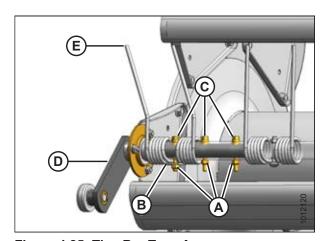


Figure 4.85: Tine Bar Type A

A - Nuts

B - Keepers

C - Shoulder Bolts E - End Tines D - Cam Arm Assembly

7. Replace bearing (A). Refer to 4.5.4 Installing Sealed Bearings, page 112.

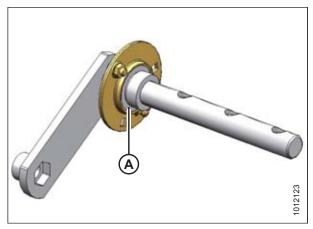


Figure 4.86: Cam Arm Assembly

- 8. Replace tines as follows:
 - a. Remove bolt (A) and keeper (B) on tine to be replaced.
 - b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
 - c. Slide tines off tine bar.
 - d. Install replacement tine on tine bar and secure with bolt (A) and keeper (B). Install nut with flat side against tine bar.
 - e. Slide remaining tines onto tine bar and attach to tine bar. Do **NOT** install bolts in end tines at this time.
- 9. Install cam arm assembly (A), complete with bearing onto tine bar.
- 10. Engage cam arm (A) into cam track as shown.
- 11. Attach bearing flangettes with bolts (B). Tighten bolts to 31–36 Nm (23–26 lbf·ft).
- 12. Lock the bearing.

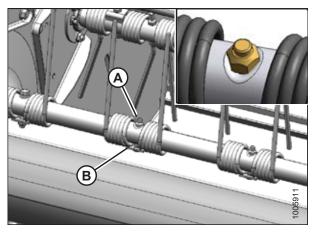


Figure 4.87: Tine Installation

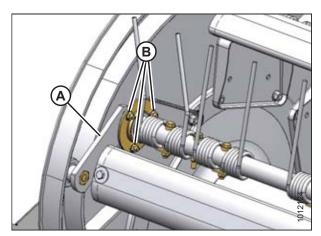


Figure 4.88: Cam End Tine Bar with Shoulder Bolts (B) Tine Bar Shown

IMPORTANT:

Replace hardware at cam end of tine bar with hardware as specified in the following steps.

- 13. Position tines as shown and install bolts (A) with keepers, spacers (B) and nuts (C).
- 14. Install bolts (D), spacers (B), and nuts (C) between tines as shown.
- 15. Alternate hardware configuration to include both Type A Tine Bar and Type B Tine Bar configurations:
 - a. 5/16 x 2-1/2 in. carriage bolt (A)
 - b. Spacer (B)
 - c. Lock nut (C)
 - d. 5/16 x 2 in. hex head bolt (D)

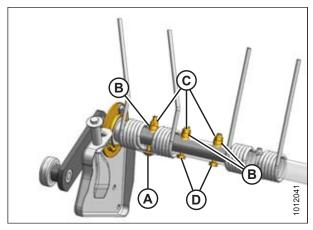


Figure 4.89: Type A Tine Bar

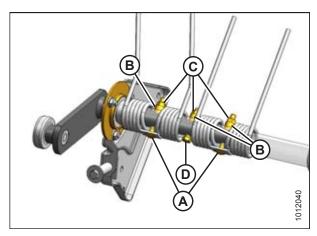


Figure 4.90: Type B Tine Bar

- A Carriage Bolts
- B Spacers
- C Lock Nuts
- D Hex Head Bolt

16. Install cam follower bearing (A) with bolt (B). Apply Loctite® #262 (or equivalent) to bolt threads, and torque to 122 Nm (90 lbf·ft).

IMPORTANT:

Install nut with distorted thread TOWARDS bolt head.

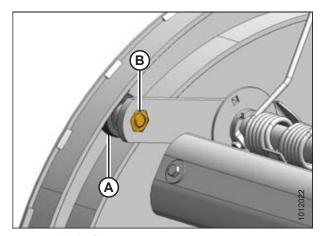


Figure 4.91: Cam Arm Bearing

17. Reposition cover (A) on cam, and tighten bolt.

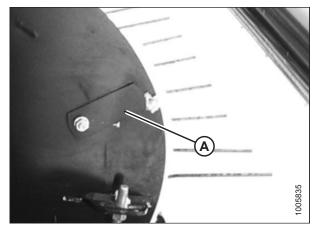


Figure 4.92: Cover

4.9.2 Replacing Tine and Bearing: Disc #2

Replace tine and bearing at disc #2 (A) as follows:

IMPORTANT:

Tine attachment hardware and configuration may vary between Tine Bar Type A and Tine Bar Type B. Identify locations so that tine hardware will be reinstalled at same locations. Both Tine Bar Type A and Tine Bar Type B configurations are required to stagger tines on the reel bat and ensure all crop is picked up.



Figure 4.93: Cam End Disc

Type A tine bars

- 1. Remove flangette mounting bolts (A) at reel disc #2.
- 2. Remove shoulder bolts (B) and keeper (C) from tine bar.
- 3. Separate left tine bar (D) with bearing from center tine bar (E).
- 4. Remove tine from center tine bar (E).

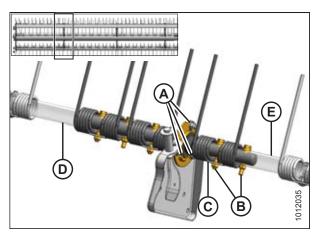


Figure 4.94: Tine Bar Type A

- 5. Remove bearing (A) from tine bar connecting shaft (B). Refer to 4.5.4 Installing Sealed Bearings, page 112.
- 6. Remove nuts (C), shoulder bolts (D), keepers (E) from left tine bar (F) and remove tines (G).

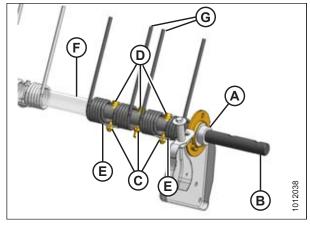


Figure 4.95: Tine Bar Type A

7. Replace tines as follows:

- a. Remove bolt (A) and keeper (B) on tine to be replaced.
- b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
- c. Slide tines off tine bar.
- d. Install replacement tine on tine bar and secure with bolt (A) and keeper (B). Install nut with flat side against tine bar.
- e. Slide remaining tines onto tine bar and attach to tine bar. Do **NOT** install bolts in end tines at this time.

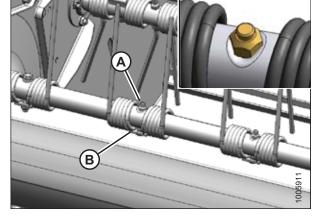


Figure 4.96: Tine Installation

- 8. Install end tines (G) onto left tine bar (F) with shoulder bolts (D), keepers (E) and nuts (C).
- 9. Assemble new bearing (A) with flangettes onto connecting shaft (B). Refer to 4.5.4 Installing Sealed Bearings, page 112.

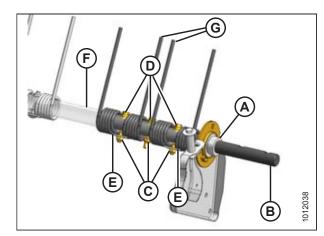


Figure 4.97: Tine Bar Type A

- 10. Slip new tine onto center tine bar (E).
- 11. Assemble left tine bar (D) to center tine bar (E) and secure with shoulder bolts (B), keeper (C), and nuts.
- 12. Install tine bar onto reel disc with hardware (A). Tighten bolts to 31–36 Nm (23–26 lbf·ft).

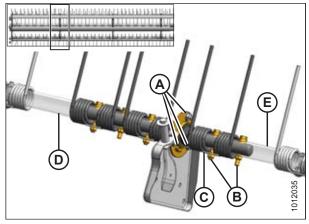


Figure 4.98: Tine Bar Type A

Type B tine bars

- 13. Remove flangette mounting bolts (A) at reel disc #2.
- 14. Remove shoulder bolts (B) and keeper (C) from tine bar.
- 15. Separate left tine bar (D) with bearing from center tine bar (E).
- 16. Remove tine from center tine bar (E).

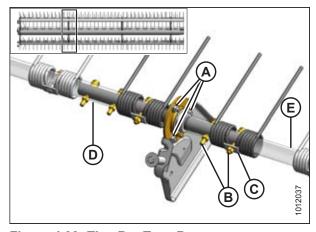


Figure 4.99: Tine Bar Type B

- 17. Remove bearing (A) from tine bar connecting shaft (B). Refer to 4.5.4 Installing Sealed Bearings, page 112.
- 18. Remove nut (C), shoulder bolt (D), keeper (E) from left tine bar (F) and remove tine (G).

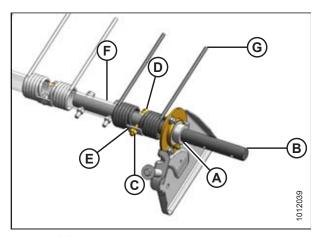


Figure 4.100: Tine Bar Type B

- 19. Install new tine (G) onto left tine bar (F) with shoulder bolt (D), keeper (E) and nut (C).
- 20. Assemble new bearing (A) with flangettes onto connecting shaft (B). Refer to 4.5.4 Installing Sealed Bearings, page 112.

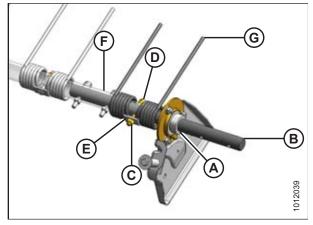


Figure 4.101: Tine Bar Type B

21. Replace tines as follows:

- a. Remove bolt (A) and keeper (B) on tine to be replaced.
- b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
- c. Slide tines off tine bar.
- d. Install replacement tine on tine bar and secure with bolt (A) and keeper (B). Install nut with flat side against tine bar.
- e. Slide remaining tines onto tine bar and attach to tine bar. Do **NOT** install bolts in end tines at this time.

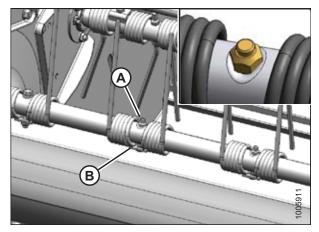


Figure 4.102: Tine Installation

- 22. Slip new tine onto center tine bar (E).
- 23. Assemble left tine bar (D) to center tine bar (E) and secure with shoulder bolt (B) and nut.
- 24. Secure tine onto center tine bar (E) with shoulder bolt (B), keeper (C) and nut.
- 25. Install tine bar onto reel disc with hardware (A). Tighten bolts to 31–36 Nm (23–26 lbf·ft).

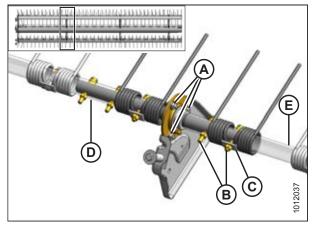


Figure 4.103: Tine Bar Type B

4.9.3 Replacing Tine and Bearing: Center Section X

Replace tine and bearings at center section \mathbf{X} (X) as follows:

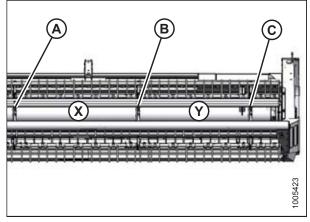


Figure 4.104: Center Section X

A - Disc #2 B - Disc #3 C - Disc #4 X - Section X

Y - Section Y

1. Remove flangette mounting bolts (A) at reel discs #3 and #4.

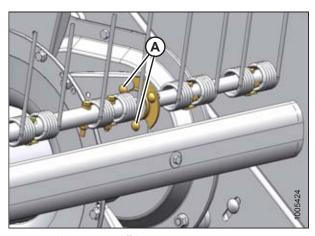


Figure 4.105: Disc #4

- 2. Remove shoulder bolts (B) and keeper (C) connecting tine bar sections **X** and **Y** at reel disc #3.
- 3. Lift tine bar away from reel arms, and remove complete tine bar section **Y** (including reel bearings at discs #3 and #4).
- 4. To replace tine bar bearing, refer to 4.5.4 Installing Sealed Bearings, page 112.

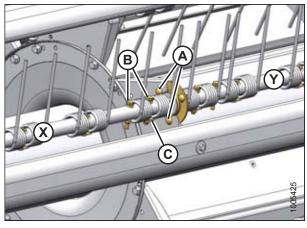


Figure 4.106: Disc #3

A - Flangette Mounting Bolts

B - Shoulder Bolts X - Section X

C - Keeper

154

Y - Section Y

Revision A

- 5. Remove tine as follows:
 - a. Remove bolt (A) and keeper (B) on tine to be replaced.
 - b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
 - c. Slide tines off tine bar.
 - d. Install tines on tine bar, and secure with bolts (A) and keepers (B). Install nut with tapered side against tine bar. Do **NOT** install bolts in end tines at this time.

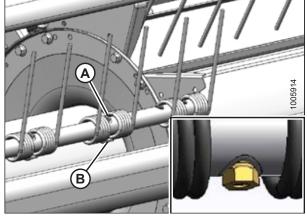


Figure 4.107: Disc #3

- 6. Assemble tine bar section **Y** (including reel bearings at discs #3 and #4) to tine bar section **X** at reel disc #3.
- 7. Position tines as shown, and install shoulder bolts (B) with keeper (C).

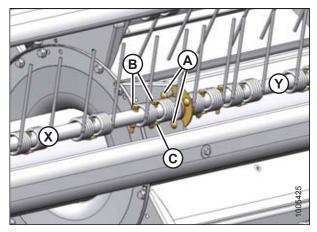


Figure 4.108: Disc #3

A - Flangette Mounting Bolts

C - Keeper Y - Section Y B - Shoulder Bolts X - Section X

,

8. Attach bearing flangettes to reel arm at discs #3 and #4 with bolts (A). Tighten bolts to 31–36 Nm (23–26 lbf·ft).

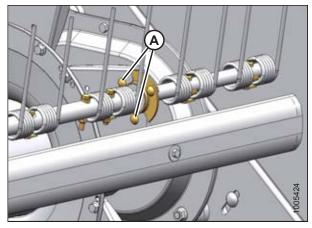


Figure 4.109: Disc #4

4.9.4 Replacing Tine and Bearing: Opposite Cam – Section Y

Replace tine and bearings at center section $\mathbf{Y}(Y)$ as follows:

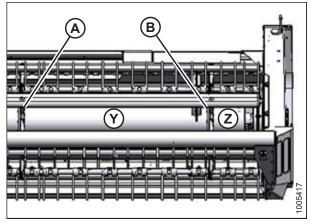


Figure 4.110: Opposite Cam - Section Y

A - Disc #3 Y - Section Y B - Disc #4 Z - Section Z

- 1. Remove shoulder bolts (A) and keeper (B) connecting tine bar sections **Z** and **Y** at reel disc #4.
- 2. Remove flangette mounting bolts (C) at reel disc #4.
- 3. Lift tine bar away from reel arms, and remove complete tine bar section **Z**, complete with bearing assembly.
- 4. To replace tine bar bearing, refer to 4.5.4 Installing Sealed Bearings, page 112.

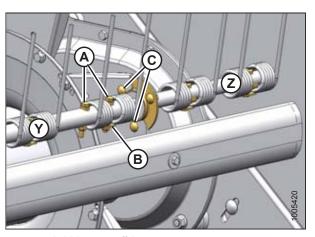


Figure 4.111: Disc #4

A - Shoulder bolts

C - Flangette Mounting Bolts

Z - Section Z

B - Keeper

Y - Section Y

- 5. Replace tine as follows:
 - a. Remove bolt (A) and keeper (B) on tine to be replaced.
 - b. Remove bolts and keepers on tines as required to facilitate replacement of damaged or worn tine.
 - c. Slide tines off tine bar.
 - d. Install tines on tine bar, and secure with bolts (A) and keepers (B). Install nut with tapered side against tine bar. Do **NOT** install bolts in end tines at this time.
- 6. Install tine bar extension **Z** including bearing to section **Y** at reel disc #4.

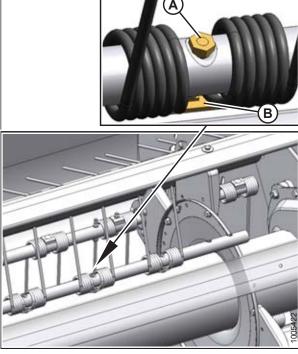


Figure 4.112: Disc #4

A - Bolt Y - Section Y

B - Keeper

- 7. Install shoulder bolts (A) and keeper (B) with tine to connect tine bar extension.
- 8. Install flangette mounting bolts (C) at reel disc #4. Tighten to 21–27 Nm (16–20 lbf·ft).

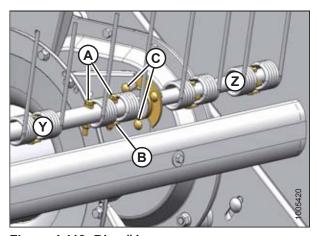


Figure 4.113: Disc #4

A - Shoulder Bolts C - Flangette Mounting Bolts

Z - Section Z

wounting boits

B - Keeper Y - Section Y

4.9.5 Replacing Tine: Tine Bar Extension – Section Z

Replace tine and bearings at center section **Z** (Z) as follows:

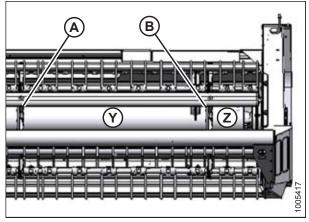


Figure 4.114: Tine Bar Extension – Section Z

A - Disc #3 Y - Section Y B - Disc #4 Z - Section Z

1. Remove bolt (A) and keepers (B) on tine to be replaced, and slide tines off tine bar.

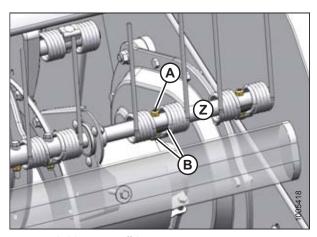


Figure 4.115: Disc #4

A - Bolt Z - Section Z **B** - Keepers

 Install tines on tine bar, and secure with bolt (A) and two keepers (B). Tine (C) must be clamped between keepers (B). Install nut with flat side against tine bar extension.

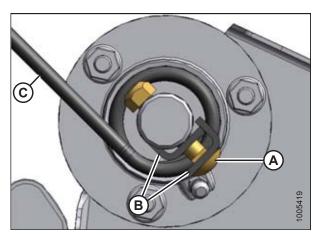


Figure 4.116: End View of Tine Bar

4.10 Straightening Auger Pans

The high density polyethylene auger pans are repairable and replaceable. Refer to your Dealer for details on replacing the pans.

IMPORTANT:

To prolong the life of the auger pan, be sure to check that reel tines do not contact the pans when adjusting the reel position or tine pitch.

Stones and other debris can deform the polyethylene pans. If this occurs, the pans can be straightened.

CAUTION

To avoid personal injury, before servicing header or opening drive covers, follow procedures in 4.1 *Preparing for Servicing, page 99*, and 1 *Safety, page 1*.

- 1. Heat the deformed area with a heat gun until the polyethylene is almost sticky.
- 2. Push out the dent, and then apply a cold wet rag. Keep wetting the rag in cold water, and applying it on the area until cool. This ensures the polyethylene retains its shape.

NOTE:

If the dent is too severe, and has stretched the polyethylene, it may be necessary to locally remove the polyethylene. Use a plastic welder to rejoin the material. Replacement pans are also available from your Dealer.

4.11 Replacing Rubber Fingers

Rubber fingers should be replaced if missing or damaged.

To replace a rubber finger, follow these steps:

- 1. Remove nut and bolt (A), and then remove finger (B).
- 2. Position new finger in holder, and then install bolt and nut. Rubber finger should be free to move after bolt is tightened.

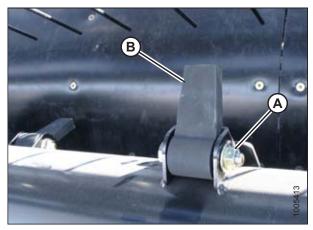


Figure 4.117: Auger Finger

4.12 Stripper Bar

Stripper bars help prevent the crop from wrapping around the auger and improve crop flow into the conditioner.

To maintain 1–4 mm (1/32–5/32 in.) clearance (B) between auger (A) flighting and stripper bars, bars may need replacing due to wear or damage. Shims may also need to be installed to compensate for local irregularities in the structure.

If after adjusting stripper bars, auger position needs to be adjusted, refer to 3.8.4 Setting Auger Position, page 63.

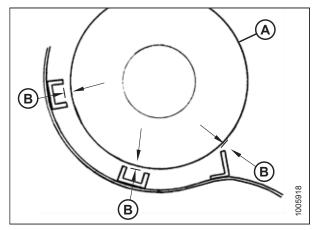


Figure 4.118: Auger to Stripper Bar Clearance

4.12.1 Removing Stripper Bar

Heavy crops may cause plugging across the auger due to restricted flow at the stripper bars. To address this problem, remove the lower stripper bar (A), and if necessary, the center stripper bar (B) at each end of the header.

WARNING

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.

WARNING

To avoid bodily injury or death from fall of raised machine, always lock-out lift cylinders before going under header for any reason.

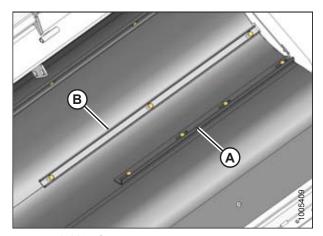


Figure 4.119: Stripper Bars

To remove a stripper bar, follow these steps:

- 1. Turn off engine and remove key.
- 2. Remove bolts attaching stripper bar to pan.
- 3. Remove four nuts and bolts (A) that secure stripper bar (B) to the pan.
- 4. Replace bolts in pan.

NOTE:

Special countersunk bolts are available from your Dealer.

4.12.2 Replacing Stripper Bars

WARNING

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.

- Remove four nuts and bolts (A) that secure each stripper bar (B) (both left and right side) to the pan, and remove bars. There are six bars in total.
- 2. Position new bars (B) on pan as shown, with upper flange on front bar facing forward.
- 3. Install three bolts and nuts (A) in each bar, and torque to 203 Nm (150 lbf·ft).
- 4. Check clearance between auger and stripper bars.
- 5. Loosen bolts (A), and add shims between stripper bars and pan at bolt locations as required to obtain clearance as shown.
- 6. Retighten bolts to specified torque.

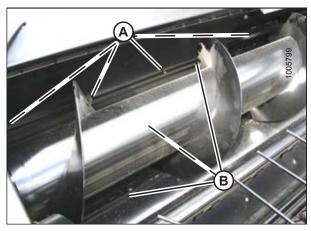


Figure 4.120: Stripper Bars

4.12.3 Installing Front Stripper Bar Extensions

Extensions for the front stripper bar are provided for installation (if required for certain crop conditions), especially in tall crops that cause material to bunch up at the ends of the conditioner rolls.

Stripper bar extensions will allow the auger to carry the crop more towards the center, rather than prematurely feeding it to the conditioner.

WARNING

To avoid bodily injury or death from unexpected start-up or fall of raised machine, stop engine, remove key, and engage safety props before going under machine.

To install front stripper bar extensions, follow these steps:

- 1. Turn of engine and remove key.
- 2. Raise header, and engage lift cylinder stops.
- Remove nuts and carriage bolts (A) securing the two extensions (B) to underside of header pan support. Retain hardware for reinstallation.

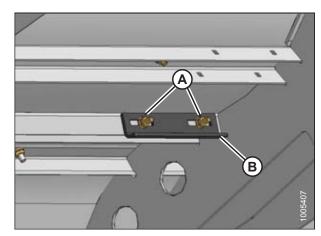


Figure 4.121: Stripper Bar Extension

- 4. Position extension (A) at inboard end of front stripper bars, and mark locations of the two holes onto the pan.
- 5. Drill two 8 mm (5/16 in.) holes at these locations.
- 6. Install extension (A) with carriage bolts (C) retained from Step *3*, page 162.
- 7. Repeat above steps for other extension.

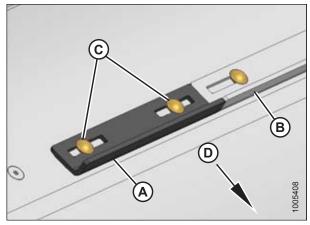


Figure 4.122: Stripper Bar Extension

- A Stripper Bar Extension
- B Stripper Bar
- C Carriage Bolts
- D Forward

Conditioner 4.13

CAUTION

To avoid personal injury, before servicing header or opening drive covers, follow procedures in .

Changing Gearbox Oil 4.13.1

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

NOTE:

Change conditioner drive gearbox lubricant after the first 50 hours of operation, and every 1000 hours (or 3 years) thereafter.

To change the oil in the conditioner gearbox, follow these steps:

- 1. Lower header to ground.
- Turn off engine and remove key.
- 3. Open driveline shield (A).

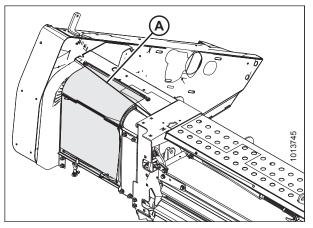


Figure 4.123: Driveline Shield

- 4. Place a suitable container under gearbox drain to collect oil.
- 5. Remove breather (A) and check plug (B).

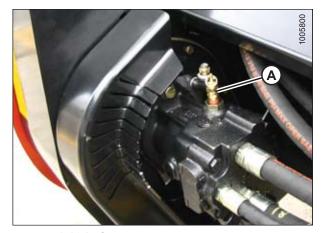


Figure 4.124: Gearbox Breather

Figure 4.125: Check Plug

6. Remove drain plug (A) and allow oil to drain. Replace drain plug once oil has drained.

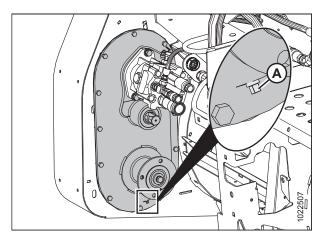


Figure 4.126: Gearbox Drain

- 7. Add oil at (A) to required level. Refer to inside back cover for recommended lubricant.
- 8. Oil is at required level when it runs out of check plug (B).

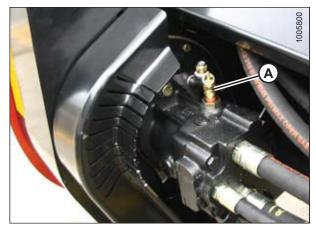


Figure 4.127: Gearbox Breather

Figure 4.128: Check Plug

4.13.2 Removing Forming Shield

- 1. Turn off engine and remove key.
- 2. Remove hairpins (B), and washers that secure straps (A) to frame.
- 3. Hold onto forming shield, and slip straps off pins. Lower forming shield to ground.

Figure 4.129: Forming Shield

- 4. Remove two clevis pins (B) from forming shield forward end.
- 5. Lift forming shield off bolts (A) in windrower legs, and lower to ground. Replace clevis pins in forming shield.
- 6. Slide forming shield out from under windrower, or drive windrower away from forming shield.

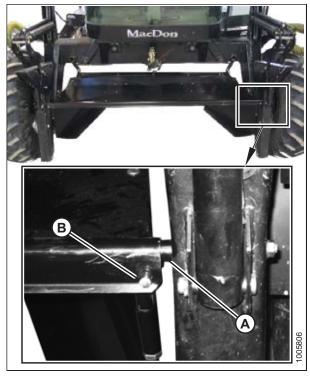


Figure 4.130: Forming Shield

4.13.3 Disassembling Forming Shield

To disassemble the forming shield, follow these steps:

- 1. Invert forming shield onto top.
- 2. Remove lynch pin (A) from adjuster rods (B), and disassemble rods from side deflectors (C).

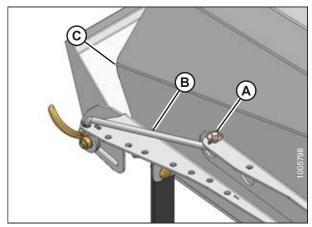


Figure 4.131: Forming Shield

3. Disassemble nut (A) from bolt (B), and lift deflector (C) and washer (D) off forming shield. Repeat for other deflector.

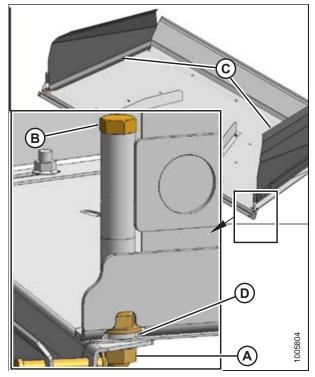


Figure 4.132: Forming Shield

- 4. Disassemble locking handles (A), and remove bolts.
- 5. Disassemble fluffer shield (B) from forming shield cover.

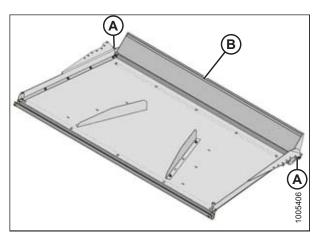


Figure 4.133: Cover

6. Remove bolts (A) to remove deflector fins (B) from cover.

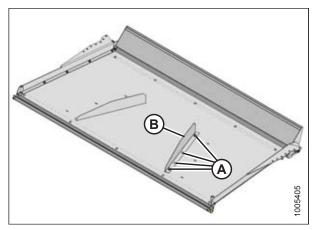


Figure 4.134: Cover

4.13.4 Assembling Forming Shield

To assemble the forming shield, follow these steps:

1. Attach deflector fins (B) to forming shield cover with bolts (A).

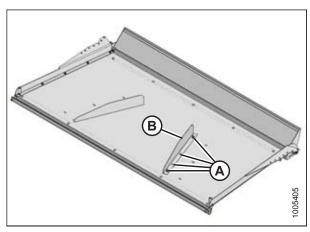


Figure 4.135: Cover

- 2. Attach fluffer shield (B) to forming shield cover.
- 3. Attach locking handles (A) to forming shield cover with bolts.

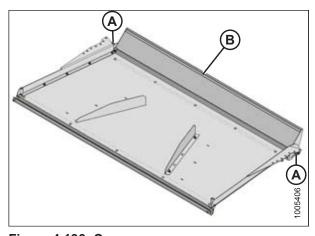


Figure 4.136: Cover

4. Attach deflectors (C) and washers (D) to forming shield cover with nuts (A) and bolts (B).

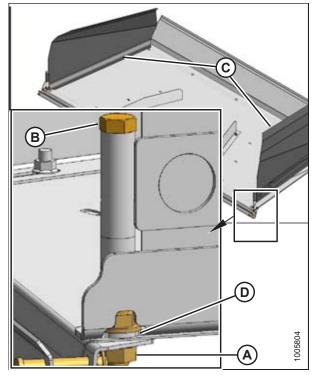


Figure 4.137: Forming Shield

5. Attach adjuster rods (B) to side deflectors (C) with lynch pin (A).

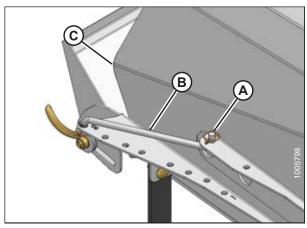


Figure 4.138: Forming Shield

4.13.5 Installing Forming Shield

To install the forming shield, follow these steps:

1. If attached, remove header from the windrower for ease of installing the forming shield. Refer to windrower operator's manual for procedure.

NOTE:

Do **NOT** install the two triangular shaped plates from the forming shield kit. Triangular plates are used with rotary headers.

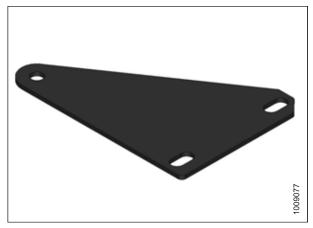


Figure 4.139: Triangular Plate

2. Install bolt (A) with spacer (B) and nut on each leg in the upper hole. Hardware is supplied with forming shield kit.

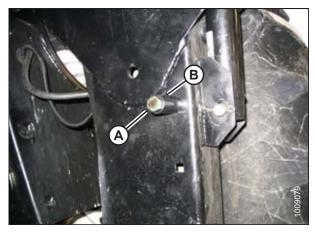


Figure 4.140: Windrower Leg

3. Remove two clevis pins (A) from forward end of forming shield.

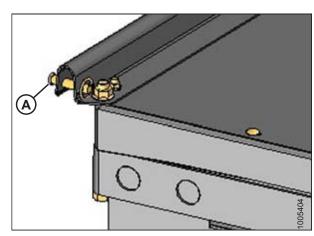


Figure 4.141: Forming Shield

4. Position forming shield (A) under windrower frame.

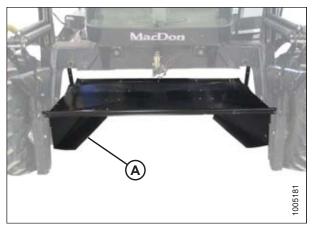


Figure 4.142: Forming Shield Under Windrower

5. Position forming shield onto bolts (A) in windrower legs and secure with clevis pins (B) and hairpin.

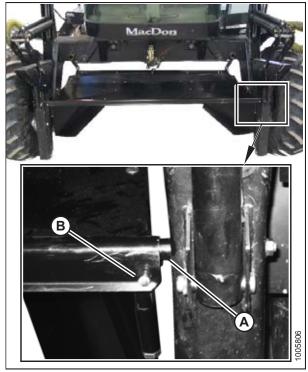


Figure 4.143: Forming Shield Attached to Windrower Legs

6. Lift aft end of the forming shield and attach straps (B) to pins (A) on windrower frame. Install washer and hairpin to secure strap. Use the middle hole and adjust height to suit the crop.

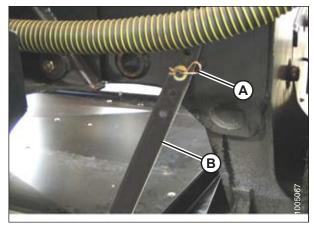


Figure 4.144: Forming Shield Attached to Windrower Frame

- Set forming shield side deflectors to desired width by positioning adjuster bars (A). Use the same hole location on both sides.
 - Position deflectors at the narrowest setting for a narrow windrow (silage for example).
 - Position deflectors at the widest setting for a wide windrow.

Refer to 3.8.14 Positioning the Forming Shields, page 80.

8. Adjust fluffer shield (C) to middle position. Loosen handles (B) if required. Refer to *Positioning Rear Deflector (Fluffer Shield)*, page 81.

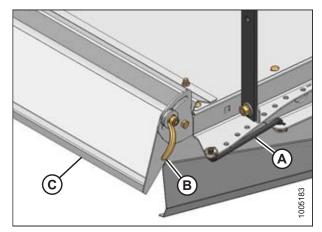


Figure 4.145: Side Deflectors and Fluffer Shield

4.13.6 Removing Header Drive Motor

This procedure applies to A40-D and A40-DX (excluding Grass Seed Special A40-D and Grass Seed Special A40-DX) double-knife headers.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 1. Shut down the engine and remove key from ignition.
- 2. Open conditioner drive shield.

IMPORTANT:

Mark hoses and make a diagram of hose routing. This is useful during reassembly.

3. Disconnect hoses at couplers on motor.

4. Remove two bolts (A) securing motor to gearbox, and remove motor.

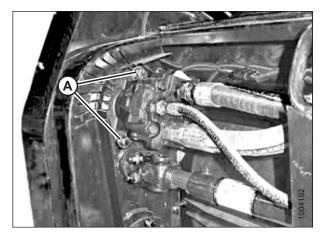


Figure 4.146: Header Drive Motor

4.13.7 Installing Header Drive Motor

This procedure applies to A40-D and A40-DX (excluding Grass Seed Special A40-D and Grass Seed Special A40-DX) double-knife headers.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

Install hydraulic motor onto the gearbox as follows:

- 1. Turn off engine and remove key.
- 2. Apply light coat of silicone to motor flange, and position motor on gearbox as shown until mounting holes are aligned, and pinion engages gear in gearbox.
- 3. Clean off excess sealant from motor flange and gearbox face.
- 4. Install bolts (A) and washers, and torque to 102 Nm (75 lbf·ft).
- 5. Reconnect hoses to motor.

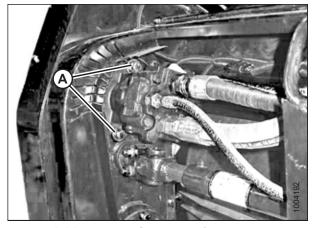


Figure 4.147: Motor: Single Knife

4.13.8 Removing Conditioner Gearbox

To remove the conditioner drive gearbox from an A40-D or A40-DX header, follow these steps:

1. Open the conditioner drive shield and header left endshield.

2. Remove two bolts (A) securing channel (B) to frame.

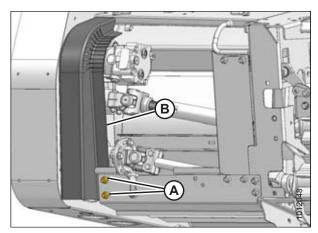


Figure 4.148: Conditioner Drive

3. Remove two hex bolts (A), and one carriage bolt (B) securing channel (C) to endsheet and remove channel (C).

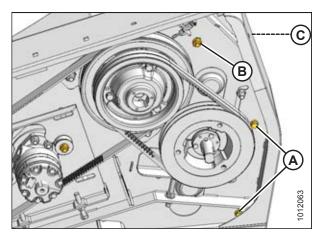


Figure 4.149: Header Drive

4. Remove two bolts (A) securing motor (B) to gearbox. Do **NOT** disconnect hoses.

NOTE:

Hoses not shown for clarity.

5. Carefully pull motor (B) from gearbox and move it clear of work area.

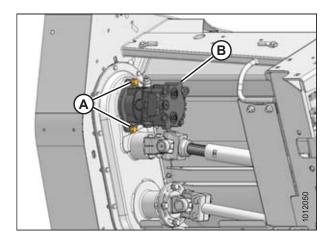


Figure 4.150: Gearbox Motor

- 6. Remove two bolts (A) in upper driveline (B).
- Pull driveline (B) off gearbox. If necessary, use a screwdriver or equivalent to spread yoke. Move driveline clear of work area.
- 8. Remove four bolts (C) from flange on lower driveline (D) and remove driveline from gearbox. Move driveline clear of work area.

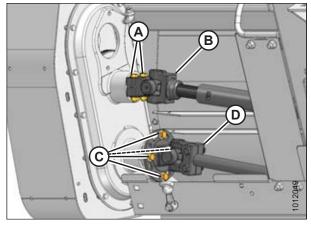


Figure 4.151: Drivelines

- 9. Remove knife drive V-belts (A). Refer to *Removing Double V-Belts from Left Side*, page 137.
- 10. Remove the three bolts (B) from the tapered bushing (D).
- 11. Install two bolts (B) in the two threaded holes (C) in bushing (D) and tighten to release the bushing.
- 12. Remove bushing (D) and key.
- 13. Remove pulley (E).

CAUTION

Be sure to support the gearbox when removing the nuts. Gearbox weighs 34 kg (79 lb.).

14. Remove three nuts (A) securing gearbox (B) to frame and remove gearbox (B).

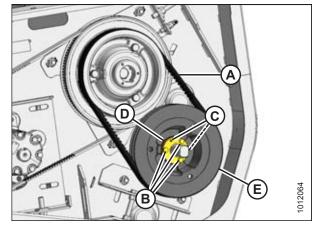


Figure 4.152: Knife Drive Belts

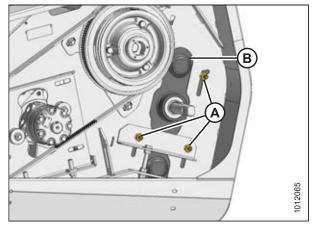


Figure 4.153: Conditioner Detachment

4.13.9 Installing Conditioner Gearbox

To install the conditioner drive gearbox on an A40-D or an A40-DX header, follow these steps:

1. Position gearbox (B) as shown, picking up the three holes in the endsheet and secure with three flanged lock nuts (A). Do not fully tighten.

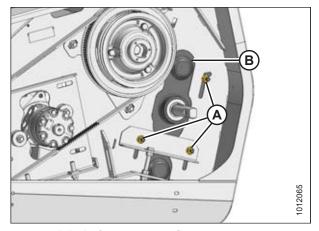


Figure 4.154: Conditioner Gearbox

1012086

Figure 4.155: Gearbox Pulley

- 2. Locate key (A) in shaft.
- 3. Place pulley (B) onto shaft.

- 4. Place tapered bushing (A) onto shaft, align with key (B) in shaft and push bushing (A) into place.
- 5. Align slot in pulley (C) with key (D) in tapered bushing and slide pulley (C) onto bushing (A).
- 6. Align pulley (C) and countershaft pulley (F) faces to within 1.5 mm (1/16 in.).
- 7. Install three bolts (E) in tapered bushing (A) and tighten to 25 Nm (18 lbf·ft).
- 8. Tap bushing (A) and torque bolts. Repeat until bolts no longer turn at 25 Nm (18 lbf·ft).

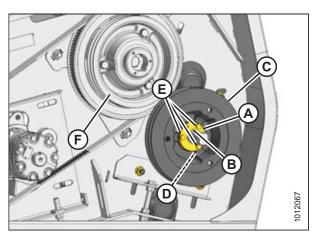


Figure 4.156: Gearbox Pulley

9. Install knife drive V-belts (A). Refer to *Installing Double V-Belts*, page 138.

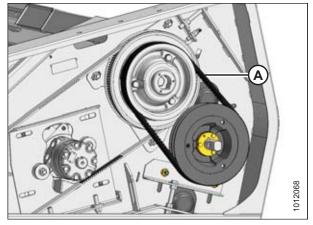


Figure 4.157: Header Drive

 Remove oil level check plug (A) in gearbox. If oil does not run out, add oil to required level. Refer to your header operator's manual.

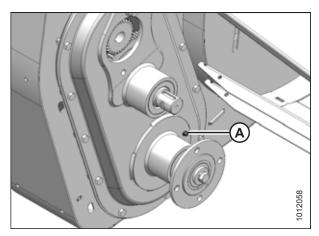


Figure 4.158: Gearbox

- 11. Align keyway in upper driveline yoke (B) with key in gearbox shaft and attach yoke (B) to shaft.
- 12. Install two hex head bolts (A) and flanged lock nuts to secure yoke. Tighten bolts.
- 13. Install timing flange on lower driveline (D) onto lower shaft on gearbox with four hex head bolts (C), two flat washers (E) under each bolt head, lock washers (F) and plain nuts (G). Do not tighten.

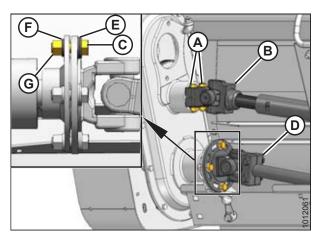


Figure 4.159: Upper and Lower Drivelines

- 14. Apply a light coat of silicone to motor flange.
- 15. Position hydraulic motor (A) onto gearbox as shown and secure with two hex head bolts (B) with thread locking compound, two flat washers (C), and two lock washers (D). Torque to 112 Nm (83 lbf·ft).
- 16. Time the rolls. Refer to 4.13.11 Checking/Adjusting Roll Timing, page 181.
- C D B A Z90Z101

Figure 4.160: Hydraulic Motor

- 17. Position channel (B) against endsheet as shown, picking up the three holes in endsheet.
- 18. Install two carriage bolts and nuts (A) in lower two holes.

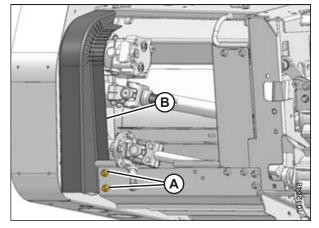


Figure 4.161: Conditioner Drive

- 19. Install carriage bolt and nut in upper hole (B) with head facing inboard.
- 20. Install two hex bolts with lock washers, and flat washers in remaining locations (A).
- 21. Tighten hardware.
- 22. Close conditioner driveline shield and endshield.

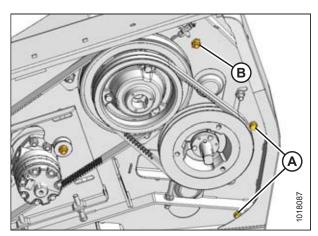
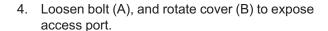


Figure 4.162: Header Drive

4.13.10 Checking/Adjusting Roll Alignment

Rolls are aligned at the factory, but adjustment is provided in case the rolls become misaligned during operation.


1. Lower header until it rests on the ground.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- 2. Open conditioner driveshield.
- 3. Locate roll alignment cover (A).

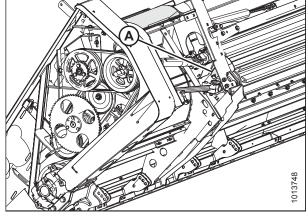


Figure 4.163: Roll Alignment Cover

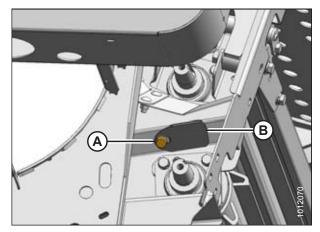


Figure 4.164: Roll Alignment

5. Examine roll bar spacing (X) at each end of the rolls. The rolls are aligned if (X) varies less than 1.6 mm (1/16 in.) from one end to the other.

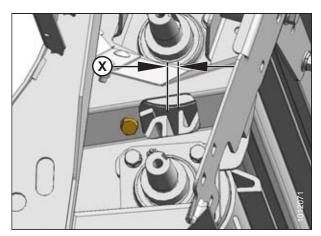
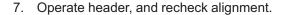



Figure 4.165: Roll Bar Spacing

- 6. If roll bar spacing (X) (as shown in Step *5, page 180*) varies more than 1.6 mm (1/16 in.), align rolls as follows:
 - a. Remove nuts and bolts (A), and remove shims (B). The shims can be lifted off the pivot rod.
 - b. Move upper roll until dimension (X) at both ends looking through port (as shown in Step *5, page 180*) is within 1.6 mm (1/16 in.).
 - c. Reinstall shims, ensuring hardened washer (C) is against the pivot tube.
 - d. Reinstall bolts (A) and nuts.

- 8. Close cover (B), and tighten bolt (A).
- 9. Close conditioner driveshield.

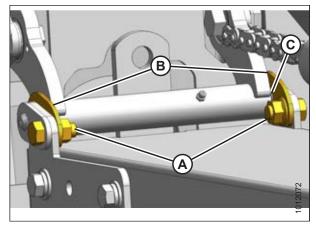


Figure 4.166: Adjustment

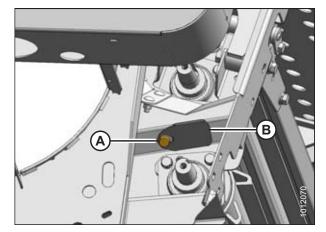


Figure 4.167: Access Cover

4.13.11 Checking/Adjusting Roll Timing

The rolls must be correctly timed with each steel bar on one roll centered between two bars of the other roll.

WARNING

To avoid bodily injury or death from fall of raised machine, always lock-out lift cylinders before going under header for any reason.

- 1. Open conditioner driveshield at left end of conditioner.
- 2. Loosen bolt (A), and rotate cover (B) to expose access port (C) at each end of conditioner.

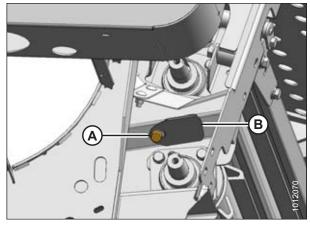


Figure 4.168: Access Cover

3. Examine roll spacing (X) at each end of the rolls with header fully lowered. Each steel bar on one roll should be centered between two bars of the other roll so that distance (X) is 12 mm (1/2 in.).

NOTE:

If the distance (X) varies more than 1.6 mm (1/16 in.) from one end to the other, the rolls should be realigned. Refer to 4.13.10 Checking/Adjusting Roll Alignment, page 180.

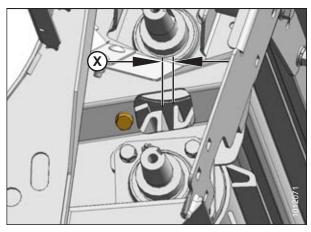


Figure 4.169: Roll Timing

- 4. If required, adjust the roll timing as follows:
 - a. Loosen four bolts (A) in slots of yoke plate on lower driveline.
 - b. Turn rolls to achieve best timing.
 - c. When roll timing is satisfactory, tighten bolts (A) to secure the position.
- 5. Recheck distance between the bars at both ends. Refer to Step *3, page 182*.

Figure 4.170: Timing Flange

- 6. Close cover (B), and tighten bolt (A).
- 7. Close driveshield.

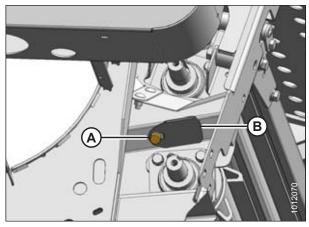


Figure 4.171: Access Cover

4.14 Replacing Skid Shoe Wear Plate

Skid shoes are equipped with replaceable wear plates that can be reversed for increase service life. It is recommended that wear plates be replaced when the skid shoe weldment becomes exposed.

CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

To replace skid shoe wear plates, follow these steps:

- 1. Raise header, and engage lift cylinder stops.
- 2. Turn off engine and remove key.
- Remove bolts and clips (A) from forward edge of skid shoe.

NOTE:

Use a socket and ratchet wrench to access the nuts.

4. Remove clevis pins (B), and disengage tabs on skid shoe from slots in cutterbar.

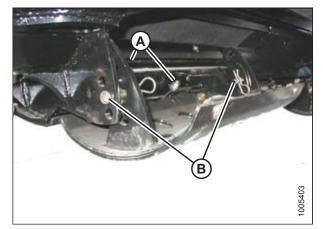


Figure 4.172: Skid Shoe

- 5. Remove eight bolts (A), and remove wear plates (B).
- 6. Position replacement wear plate (B) as shown. (The same wear plate can be reinstalled, but in the reverse position.)
- 7. Secure wear plate with bolts and nuts (A).

IMPORTANT:

If bolt heads are worn down, replace them with new 1/2 x 1 in. carriage bolts.

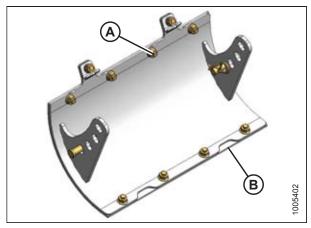


Figure 4.173: Replacement Wear Plate

8. Insert tabs on skid shoe into slots (A) on cutterbar at inboard mounting locations on frame, and secure with clevis pin (B).

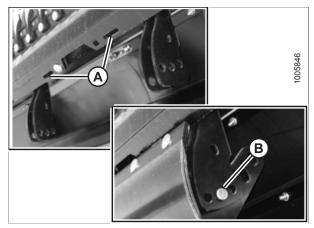


Figure 4.174: Inboard Cutterbar Mounting Location

9. Reinstall clips (A) with bolts and nuts removed at Step 3, page 184 to secure skid shoe to cutterbar.

NOTE:

Use a socket and ratchet wrench to access the nuts.

10. Remove clevis pin (B), adjust skid shoe to desired height, and reinstall two clevis pins. Secure with lynch pins.

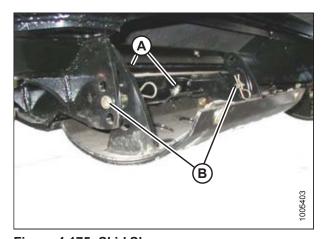


Figure 4.175: Skid Shoe

4.15 **Gauge Rollers**

Gauge rollers can be removed for replacement or repair.

Removing Gauge Rollers

A CAUTION

To avoid bodily injury or death from unexpected startup of machine, always stop engine and remove key from ignition before leaving operator's seat for any reason.

- Raise header, and engage lift cylinder stops.
- Turn off engine and remove key.
- Remove bolts and clips (A) from forward edge of gauge roller assembly.

NOTE:

Use a socket and ratchet wrench to access the nuts.

- Remove hairpins on pins (B).
- Support gauge roller, and remove pins (B).
- Disengage tabs on mounting plate from slots in cutterbar to remove roller assembly.

Figure 4.176: Gauge Roller

4.15.2 **Installing Gauge Rollers**

To install gauge rollers, follow these steps:

1. Position gauge roller assembly below cutterbar, and insert tabs on roller assembly into slots (A) in frame.

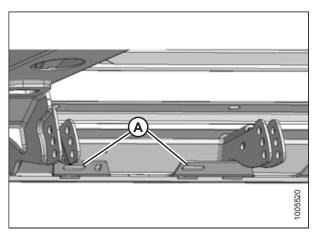


Figure 4.177: Gauge Roller Frame Location

- 2. Secure with two pins (B) at lowest position.
- 3. Attach clips (A) with bolts and nuts to secure roller assembly to cutterbar.

NOTE:

Use a socket and ratchet wrench to access the nuts.

4. Tighten nuts.

- 5. Remove pins (A), and adjust rollers to desired height. Reinstall the two pins (A).
- 6. Ensure that nut (B) on each pin registers in adjacent hole in support bracket.
- 7. Secure pins with hairpins (C).

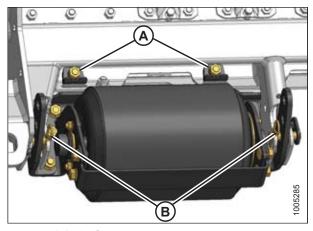


Figure 4.178: Gauge Roller Assembly

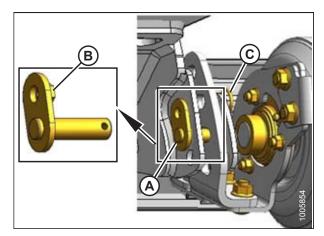


Figure 4.179: Support Bracket

4.16 Maintaining the Electrical System

Use electrical tape and wire clips as required to prevent wires from dragging or rubbing.

Keep lights clean, and replace defective bulbs.

To replace light bulbs, follow these steps:

- Using a Phillips screwdriver, remove screws (A) from fixture, and remove plastic lens.
- 2. Replace bulb, and reinstall plastic lens and screws.

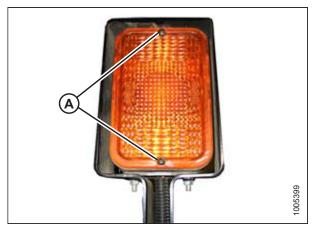


Figure 4.180: A40-D Hazard Light

5 Optional Equipment

5.1 Options and Attachments

5.1.1 Additional Skid Shoes

In addition to the standard skid shoes, two additional skid shoes may be added for extra control of cutting height and protection of cutting components.

MD #B4594

Figure 5.1: Skid Shoe

5.1.2 Gauge Roller Kit

The gauge roller kit replaces the outer skid shoes with rollers. They can be adjusted for varying cutting heights.

MD #B4593

Figure 5.2: Gauge Roller

OPTIONAL EQUIPMENT

5.1.3 Replacement Reel Bat Kit

This kit consists of one complete bat assembly for ease of replacement. Separate kits are available for different header widths:

14-Foot: MD #B471616-Foot: MD #B471718-Foot: MD #B4718

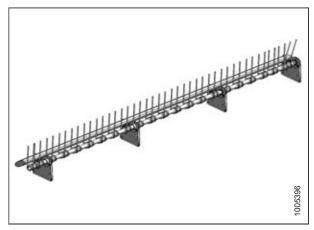


Figure 5.3: Reel Bat Assembly

5.1.4 Stub Guard Conversion Kit

Stub guards, complete with top guides and adjuster plates are designed to cut tough crops.

Separate kits are available for different header widths:

14-Foot Double-Knife: MD #B4956
16-Foot Double-Knife: MD #B4715
18-Foot Double-Knife: MD #B4957

Installation and adjustment instructions are included with the kit.

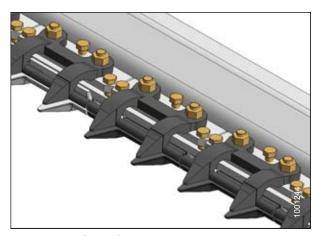


Figure 5.4: Stub Guards

OPTIONAL EQUIPMENT

5.1.5 Tall Crop Divider Kit

Tall crop dividers attach to the ends of the header for clean crop dividing and reel entry in tall crops. The kit includes left and right dividers, lean bar extensions and attachment hardware.

MD #B4690

Figure 5.5: Tall Crop Divider (Left Side)

6 Unloading and Assembly

Header-specific instructional manuals for unloading, assembly and set-up procedures are included with your shipment.

Header Description	Used on	Instruction Part Number
A40-D, A40-DX	Self-Propelled Windrower	MD #214255

7 Troubleshooting

7.1 Header Performance

Symptom	Problem	Solution	Section	
Carryover of crop on reel	Reel speed too fast	Reduce reel speed (sprocket size).	3.8.3 Adjusting Reel Speed, page 63	
Material build-up on header frame	Auger speed too fast	Reduce auger speed (sprocket size).	3.8.2 Adjusting Auger Speed, page 63	
Material build-up on header frame	Very light crop	Reduce windrower rpm.	_	
Insufficient conditioning of stems	Roll gap too large	Decrease roll gap.	3.8.12 Adjusting Conditioner Roll Gap, page 77	
Leaves damaged, crushed or stripped off stems	Reel speed too fast	Reduce reel speed.	3.8.3 Adjusting Reel Speed, page 63	
Leaves damaged, crushed or stripped off stems	Roll gap too small	Increase roll gap.	3.8.12 Adjusting Conditioner Roll Gap, page 77	
Leaves damaged, crushed or stripped off stems	Rolls improperly timed	Adjust roll timing.	4.13.11 Checking/ Adjusting Roll Timing, page 181	
Slow crop drying	Rolls not crimping crop sufficiently	Decrease roll gap.	3.8.12 Adjusting Conditioner Roll Gap, page 77	
Slow crop drying	Crop is spread too narrow	Adjust forming shields for wider swath.	3.8.14 Positioning	
Slow crop drying	Crop is bunched in windrow	Adjust forming shields/baffle.	the Forming Shields, page 80	
Excessive drying or bleaching of crop	Excessive crimping	Increase roll gap.	3.8.12 Adjusting Conditioner Roll Gap, page 77	
Excessive drying or bleaching of crop	Crop is spread too wide in windrow	Adjust forming shields.	3.8.14 Positioning the Forming Shields, page 80	
Leaving small strip of flattened, uncut material	Crowding of the uncut material	Steer windrower slightly away from uncut crop.	_	
Leaving small strip of flattened, uncut material	Reel position incorrect	Move reel forward and down.	3.8.5 Setting Reel Position, page 66	
Leaving small strip of flattened, uncut material	Knife sections or guards are worn or broken	Replace worn or broken parts.	4.7.1 Replacing Knife Section, page 114 4.7.7 Guards, page 118	

TROUBLESHOOTING

Symptom	Problem	Solution	Section
Long stubble in down crop	Cutting height too high	Lower cutting height with skid shoes.	3.8.8 Setting Cutting Height, page 72
Long stubble in down crop	Ground speed too fast	Slow down.	3.12 Selecting Ground Speed, page 92
Long stubble in down crop	Header angle too flat for guards to pick up down crop	Increase header angle.	3.8.7 Adjusting Header Angle, page 71
Long stubble in down crop	Reel position incorrect	Move reel forward and down.	3.8.5 Setting Reel Position, page 66
Long stubble in down crop	Tine aggressiveness too low	Rotate cam clockwise (viewed from RH end) for more aggressive tine action.	3.8.6 Setting Tine Aggressiveness, page 70
Pulling material by the roots or tall material leaning into machine	Ground speed too slow	Increase ground speed.	3.12 Selecting Ground Speed, page 92
Pulling material by the roots or tall material leaning into machine	Reel position incorrect	Move reel forward and down.	3.8.5 Setting Reel Position, page 66
Ragged or uneven cutting of crop	Bent or misaligned guards causing poor shearing action	Align guards for proper shearing action.	Aligning Guard, page 120
Ragged or uneven cutting of crop	Bent knife causing binding	Straighten bent knife. Check alignment, and adjust if necessary.	4.7.2 Removing Knife, page 115
Ragged or uneven cutting of crop	Ground speed too fast	Slow down. Ground speed should not exceed 13 km/h (8 mph).	3.12 Selecting Ground Speed, page 92
Ragged or uneven cutting of crop	Header angle too flat for guards to pick up down crop	Increase header angle.	3.8.7 Adjusting Header Angle, page 71
Ragged or uneven cutting of crop	Header float too light, causing bouncing	Adjust to heavier float setting.	3.8.9 Checking/ Adjusting Float – M Series, page 73
Ragged or uneven cutting of crop	Reel position incorrect	Move reel forward and down.	3.8.5 Setting Reel Position, page 66
Ragged or uneven cutting of crop	Relief valve pressure too low	Replace valve.	See Dealer
Ragged or uneven cutting of crop	Knife drive belt too loose	Increase belt tension.	4.8.1 Header Knife Drive, page 137
Ragged or uneven cutting of crop	Knife sections or guards are worn or broken	Replace worn or broken parts.	4.7.1 Replacing Knife Section, page 114

TROUBLESHOOTING

Symptom	Problem	Solution	Section
			4.7.7 Guards, page 118
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Ground speed too fast	Slow down.	3.12 Selecting Ground Speed, page 92
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Roll gap too large for proper feeding	Decrease roll gap.	3.8.12 Adjusting Conditioner Roll Gap, page 77
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Roll gap too small in thick stemmed cane-type crops	Increase roll gap.	_
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Rolls improperly timed	Adjust roll timing.	4.13.11 Checking/ Adjusting Roll Timing, page 181
Conditioner plugging; knife plugging; uneven	Extremely thick or wet	Adjust roll timing. Adjust roll timing. Adjusting Roll Timing, page 187 Raise cutting height to clear undergrowth. Consider use of stub guards. Adjust to lighter float setting. Adjusting Proper rom on PTO	3.8.8 Setting Cutting Height, page 72
formation and bunching of windrow	undergrowth		4.7.7 Guards, page 118
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Header float too heavy	Adjust to lighter float setting.	Adjusting Float – M
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	PTO speed too slow (pull-type)	Check for proper match of pump	
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Wet undergrowth	Cut when undergrowth is dry.	_
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Reel position incorrect	Move reel back and down (close to guards).	3.8.5 Setting Reel Position, page 66
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Knife drive belt too loose	Adjust belt tension.	4.8.1 Header Knife Drive, page 137
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Knife hold-downs improperly adjusted	Adjust hold-downs so knife works freely.	4.7.8 Hold-Downs, page 127

TROUBLESHOOTING

Symptom	Problem	Solution	Section
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Knife sections or guards are worn or broken	Replace worn or broken parts.	4.7.1 Replacing Knife Section, page 114 4.7.7 Guards, page 118
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Reel not feeding properly in heavy crops	Decrease ground speed.	3.12 Selecting Ground Speed, page 92
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Bent or misaligned guards causing poor shearing action	Align guards for proper shearing action.	Aligning Guard, page 120
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Forming shields improperly adjusted - fluffer too low	Adjust forming shields, raise fluffer.	3.8.14 Positioning the Forming Shields, page 80
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Fluffer bypassing or dragging crop	Adjust fluffer for proper crop control.	3.8.14 Positioning the Forming Shields, page 80
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Auger to stripper clearance too wide	Adjust auger to stripper bars clearance.	3.8.4 Setting Auger Position, page 63
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Roll gap too large	Adjust roll gap.	3.8.12 Adjusting Conditioner Roll Gap, page 77
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Conditioner running too slow	Maintain rated knife/conditioner speed.	2.2 Product Specifications, page 21
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Uneven crop flow across auger	Remove front stripper bar or stripper bar extension if installed.	4.12 Stripper Bar, page 161
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Excessive center feeding of crop	Remove front stripper bar extensions if installed.	4.12 Stripper Bar, page 161
Conditioner plugging; knife plugging; uneven formation and bunching of windrow	Build up of crop at ends of rolls, especially in tall crops	Add front stripper bar extension.	4.12 Stripper Bar, page 161
Uneven windrow formation in light crop	Rear of feed pan too low	Raise rock drop tine bar.	3.8.11 Setting Feed Pan and Rock Drop

Symptom	Problem	Solution	Section
			Tine Position, page 76
Reel causes seed loss (e.g. grass seed)	Reel speed too fast	Reel speed too fast Adjust flow control on windrower.	
Reel causes seed loss (e.g. grass seed)	Header angle too steep, causing tines to contact ground	T FIGURE DESCRIPTION AND CHECK I	
Reel causes seed loss (e.g. grass seed)	Reel not correctly positioned	Lower reel speed, move reel rearward, as close as possible to auger, and downward as close as possible to knife and pan.	3.8.3 Adjusting Reel Speed, page 63 3.8.5 Setting Reel Position, page 66
Auger plugging in heavy grass seed	Poor crop flow across auger	Remove lower stripper bar and middle stripper bar if necessary.	4.12 Stripper Bar, page 161
Plugging at delivery opening in heavy grass seed	Opening too narrow	Move pan extensions to widest position.	3.11 Grass Seed Special, page 88
Grass seed windrow too wide or too narrow	Pan extensions not adjusted properly	Adjust pan extensions.	3.11 Grass Seed Special, page 88

7.2 Mechanical

Symptom	Problem	Solution	Section
Auger and/or conditioner rolls damaged by stones	Feed pan doesn't allow stones to fall through.	Lower rock-drop tines.	3.8.11 Setting Feed Pan and Rock Drop Tine Position, page 76
Excessive breakage of knife sections or guards	Ground speed too high in stony conditions	Reduce ground speed.	3.12 Selecting Ground Speed, page 92
Excessive breakage of knife sections or guards	Cutting height too low in stony conditions	Raise cutting height with skid shoes.	3.8.8 Setting Cutting Height, page 72
Excessive breakage of knife sections or guards	Header angle too steep in stony conditions	Decrease header angle.	3.8.7 Adjusting Header Angle, page 71
Excessive breakage of knife sections or guards	Header float too heavy in stony conditions	Adjust to lighter float setting.	3.8.9 Checking/ Adjusting Float – M Series, page 73
Excessive breakage of knife sections or guards			2.2 Product Specifications, page 21
Excessive breakage of knife sections or guards	Guards, knife and hold-downs misaligned	Straighten guards, align hold-downs.	4.7.7 Guards, page 118 4.7.8 Hold-Downs, page 127
Excessive heating of hydraulic oil	Relief pressure too low	Replace relief valve.	See Dealer
Header stalling in extremely tall, heavy crop (6+ tons per acre) Insufficient crop clearance at rear of feed pan		Lower rock drop tines (rear of header pan).	3.8.11 Setting Feed Pan and Rock Drop Tine Position, page 76, or 3.8.9 Checking/Adjusting Float – M Series, page 73
Header stalling in extremely tall, heavy crop (6+ tons per acre)	Insufficient crop clearance at rear of feed pan	Remove rubber fingers from auger at delivery opening.	4.11 Replacing Rubber Fingers, page 160
Header stalling in extremely tall, heavy crop (6+ tons per acre)	Insufficient crop clearance at rear of feed pan	Increase roll gap.	3.8.12 Adjusting Conditioner Roll Gap, page 77
Header stalling in extremely tall, heavy crop (6+ tons per acre)	Feeding aids for shorter, lighter crop impede flow of heavy or thick stemmed crops (cane, sudan grass etc.)	Remove front set of stripper bars.	4.12 Stripper Bar, page 161

Symptom	Problem	Solution	Section
Header turns while unloaded but slows or stops when starting to cut	Low reservoir oil level	Add oil to reservoir.	4.6.1 Servicing Header Hydraulics, page 113
Header turns while unloaded but slows or stops when starting to cut	Cold oil in system	Reduce ground speed until oil reaches operating temperature.	3.12 Selecting Ground Speed, page 92
Header turns while unloaded but slows or stops when starting to cut	Defective motor	Repair motor.	See Dealer
Header turns while unloaded but slows or stops when starting to cut	Defective O-ring inside relief valve	Replace relief valve.	See Dealer
Header turns while unloaded but slows or stops when starting to cut	Defective pump	Repair pump.	See Dealer
Header turns while unloaded but slows or stops when starting to cut	Defective relief valve	Repair relief valve.	See Dealer
Knocking in knife drive	Worn needle bearing in knifehead	Replace	4.7.4 Removing Knifehead Bearing, page 116
Knocking in knife drive	Worn knifehead pin	Replace	4.7.3 Installing Knife, page 115
Knocking in knife drive	Incorrect end guards	Replace with special end guards.	4.7.7 Guards, page 118
Knife back breakage	Dull knife	Replace	4.7.4 Removing Knifehead Bearing, page 116
Knife back breakage	Worn knife head pin	Replace	4.7.3 Installing Knife, page 115
Knife back breakage	Bent or broken guard	Straighten or replace	4.7.7 Guards, page 118
Knife back breakage	Incorrect end guards at knifehead	Replace with correct number of special guards.	4.7.7 Guards, page 118
Windrower side drift	Header is dragging on one end and pulling to that side.	Adjust skid shoes to prevent cutterbar dragging.	3.8.8 Setting Cutting Height, page 72
Windrower side drift	Header is dragging on one end and pulling to that side.	Adjust header float.	3.8.9 Checking/ Adjusting Float – M Series, page 73
Lights malfunctioning	Improper ground	Check for proper grounding between light base and header.	4.16 Maintaining the Electrical System, page 188

Symptom	Problem	Solution	Section
Lights malfunctioning	Burned out bulb	Replace bulb.	4.16 Maintaining the Electrical System, page 188
Lights malfunctioning	Poor connection	Check connector at windrower.	_

8 Reference

8.1 Recommended Torques

8.1.1 Torque Specifications

The following tables provide correct torque values for various bolts, cap screws, and hydraulic fittings.

- Tighten all bolts to torque values specified in charts (unless otherwise noted throughout this manual).
- Replace hardware with same strength and grade of bolt.
- Use torque value tables as a guide and periodically check tightness of bolts.
- Understand torque categories for bolts and cap screws by using their identifying head markings.

Jam nuts

When applying torque to finished jam nuts, multiply the torque applied to regular nuts by f=0.65.

Self-tapping screws

Standard torque is to be used (not to be used on critical or structurally important joints).

SAE Bolt Torque Specifications

Torque values shown in following tables are valid for non-greased, or non-oiled threads and heads; therefore, do **NOT** grease or oil bolts or cap screws unless otherwise specified in this manual.

Table 8.1 SAE Grade 5 Bolt and Grade 5 Free Spinning Nut

Nominal Size (A)	Torque (Nm)		Torque (lbf·ft) (*lbf·in)	
Size (A)	Min.	Max.	Min.	Max.
1/4-20	11.9	13.2	*106	*117
5/16-18	24.6	27.1	*218	*241
3/8-16	44	48	32	36
7/16-14	70	77	52	57
1/2-13	106	118	79	87
9/16-12	153	170	114	126
5/8-11	212	234	157	173
3/4-10	380	420	281	311
7/8-9	606	669	449	496
1-8	825	912	611	676

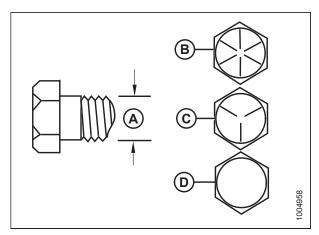


Figure 8.1: Bolt Grades

A - Nominal Size B - SAE-8 C - SAE-5 D - SAE-2

Table 8.2 SAE Grade 5 Bolt and Grade F Distorted Thread Nut

Nominal	Torqu	e (Nm)		e (lbf·ft) f·in)
Size (A)	Min.	Max.	Min.	Max.
1/4-20	8.1	9	*72	*80
5/16-18	16.7	18.5	*149	*164
3/8-16	30	33	22	24
7/16-14	48	53	35	39
1/2-13	73	80	54	59
9/16-12	105	116	77	86
5/8-11	144	160	107	118
3/4-10	259	286	192	212
7/8-9	413	456	306	338
1-8	619	684	459	507

Table 8.3 SAE Grade 8 Bolt and Grade G Distorted Thread Nut

Nominal Size (A)	Torque	e (Nm)	Torque (lbf·ft) (*lbf·in)	
Size (A)	Min.	Max.	Min.	Max.
1/4-20	16.8	18.6	*150	*165
5/16-18	24	26	18	19
3/8-16	42	46	31	34
7/16-14	67	74	50	55
1/2-13	102	113	76	84
9/16-12	148	163	109	121
5/8-11	204	225	151	167
3/4-10	362	400	268	296
7/8-9	583	644	432	477
1-8	874	966	647	716

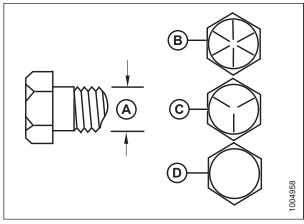


Figure 8.2: Bolt Grades

A - Nominal Size B - SAE-8 C - SAE-5 D - SAE-2

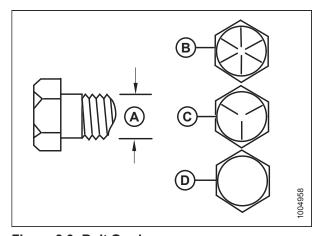


Figure 8.3: Bolt Grades

 A - Nominal Size
 B - SAE-8

 C - SAE-5
 D - SAE-2

Table 8.4 SAE Grade 8 Bolt and Grade 8 Free Spinning Nut

Nominal	Torque (Nm)		Torque (lbf·ft) (*lbf·in)	
Size (A)	Min.	Max.	Min.	Max.
1/4-20	16.8	18.6	*150	*165
5/16-18	35	38	26	28
3/8-16	61	68	46	50
7/16-14	98	109	73	81
1/2-13	150	166	111	123
9/16-12	217	239	160	177
5/8-11	299	330	221	345
3/4-10	531	587	393	435
7/8-9	855	945	633	700
1-8	1165	1288	863	954

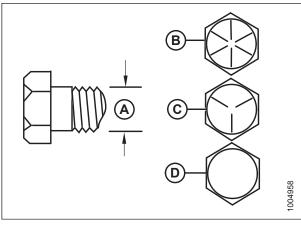


Figure 8.4: Bolt Grades

A - Nominal Size B - SAE-8 C - SAE-5 D - SAE-2

Metric Bolt Specifications

Table 8.5 Metric Class 8.8 Bolts and Class 9 Free Spinning Nut

Nominal	Torque (Nm)		Torque (lbf⋅ft) (*lbf⋅in)	
Size (A)	Min.	Max.	Min.	Max.
3-0.5	1.4	1.6	*13	*14
3.5-0.6	2.2	2.5	*20	*22
4-0.7	3.3	3.7	*29	*32
5-0.8	6.7	7.4	*59	*66
6-1.0	11.4	12.6	*101	*112
8-1.25	28	30	20	23
10-1.5	55	60	40	45
12-1.75	95	105	70	78
14-2.0	152	168	113	124
16-2.0	236	261	175	193
20-2.5	460	509	341	377
24-3.0	796	879	589	651

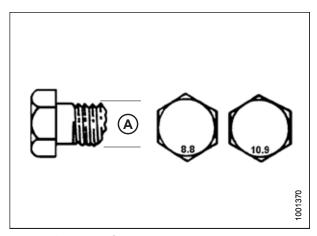


Figure 8.5: Bolt Grades

Table 8.6 Metric Class 8.8 Bolts and Class 9 Distorted Thread Nut

Nominal			Torque (*lb	e (lbf·ft) f·in)
Size (A)	Min.	Max.	Min.	Max.
3-0.5	1	1.1	*9	*10
3.5-0.6	1.5	1.7	*14	*15
4-0.7	2.3	2.5	*20	*22
5-0.8	4.5	5	*40	*45
6-1.0	7.7	8.6	*69	*76
8-1.25	18.8	20.8	*167	*185
10-1.5	37	41	28	30
12-1.75	65	72	48	53
14-2.0	104	115	77	85
16-2.0	161	178	119	132
20-2.5	314	347	233	257
24-3.0	543	600	402	444

Table 8.7 Metric Class 10.9 Bolts and Class 10 Free Spinning Nut

Nominal	Torqu	e (Nm)		· (lbf·ft) f·in)
Size (A)	Min.	Max.	Min.	Max.
3-0.5	1.8	2	*18	*19
3.5-0.6	2.8	3.1	*27	*30
4-0.7	4.2	4.6	*41	*45
5-0.8	8.4	9.3	*82	*91
6-1.0	14.3	15.8	*140	*154
8-1.25	38	42	28	31
10-1.5	75	83	56	62
12-1.75	132	145	97	108
14-2.0	210	232	156	172
16-2.0	326	360	242	267
20-2.5	637	704	472	521
24-3.0	1101	1217	815	901

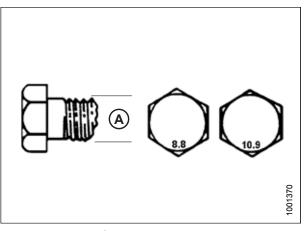


Figure 8.6: Bolt Grades

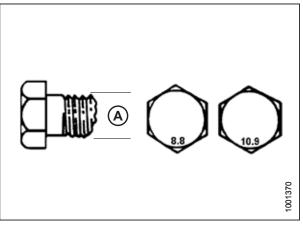


Figure 8.7: Bolt Grades

Table 8.8 Metric Class 10.9 Bolts and Class 10 Distorted Thread Nut

Nominal	Torque	Torque (Nm)		e (lbf·ft) f·in)
Size (A)	Min.	Max.	Min.	Max.
3-0.5	1.3	1.5	*12	*13
3.5-0.6	2.1	2.3	*19	*21
4-0.7	3.1	3.4	*28	*31
5-0.8	6.3	7	*56	*62
6-1.0	10.7	11.8	*95	*105
8-1.25	26	29	19	21
10-1.5	51	57	38	42
12-1.75	90	99	66	73
14-2.0	143	158	106	117
16-2.0	222	246	165	182
20-2.5	434	480	322	356
24-3.0	750	829	556	614

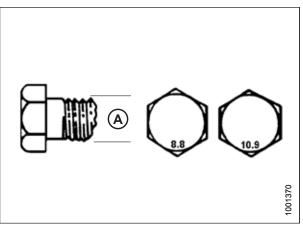


Figure 8.8: Bolt Grades

Metric Bolt Specifications Bolting into Cast Aluminum

Table 8.9 Metric Bolt Bolting into Cast Aluminum

	Bolt Torque				
Nominal Size (A)	8.8 (Cast Aluminum) (Ca			10.9 est Aluminum)	
	Nm	lbf∙ft	Nm	lbf∙ft	
М3	_	ı	_	1	
M4	_	ı	4	2.6	
M5	_	ı	8	5.5	
M6	9	6	12	9	
M8	20	14	28	20	
M10	40	28	55	40	
M12	70	52	100	73	
M14	_	_	_	_	
M16	_	_	_	_	

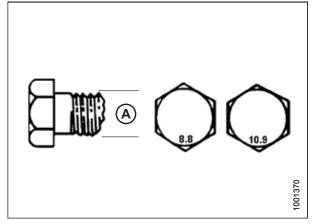


Figure 8.9: Bolt Grades

Flare-Type Hydraulic Fittings

- 1. Check flare (A) and flare seat (B) for defects that might cause leakage.
- 2. Align tube (C) with fitting (D) and thread nut (E) onto fitting without lubrication until contact has been made between flared surfaces.
- 3. Torque fitting nut (E) to specified number of flats from finger tight (FFFT) or to a given torque value in Table 8.10, page 208.
- 4. Use two wrenches to prevent fitting (D) from rotating. Place one wrench on fitting body (D), and tighten nut (E) with other wrench to torque shown.
- 5. Assess final condition of connection.

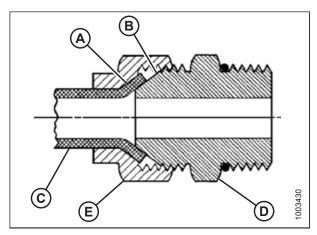


Figure 8.10: Hydraulic Fitting

Table 8.10 Flare-Type Hydraulic Tube Fittings

		Torque Value ⁵		Flats from Finger Tight (FFFT)	
SAE Dash Size	Thread Size (in.)	Nm	lbf∙ft	Tube	Swivel Nut or Hose
-2	5/16–24	4–5	3–4		_
-3	3/8–24	7–8	5–6		_
-4	7/16–20	18–19	13–14	2-1/2	2
-5	1/2–20	19–21	14–15	2	2

^{5.} Torque values shown are based on lubricated connections as in reassembly.

Table 8.10 Flare-Type Hydraulic Tube Fittings (continued)

SAE Dash Size		Torque Value ⁶		Flats from Finger Tight (FFFT)	
	Thread Size (in.)	Nm	lbf∙ft	Tube	Swivel Nut or Hose
-6	9/16–18	30–33	22–24	2	1-1/2
-8	3/4–16	57–63	42–46	2	1-1/2
-10	7/8–14	81–89	60–66	1-1/2	1-1/2
-12	1-1/16–12	113–124	83–91	1-1/2	1-1/4
-14	1-3/16–12	136–149	100–110	1-1/2	1-1/4
-16	1-5/16–12	160–176	118–130	1-1/2	1
-20	1-5/8-12	228–250	168–184	1	1
-24	1-7/8-12	264–291	195–215	1	1
-32	2-1/2-12	359–395	265–291	1	1
-40	3–12	-	_	1	1

^{6.} Torque values shown are based on lubricated connections as in reassembly.

O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

- 1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
- 2. Back off lock nut (C) as far as possible. Ensure that washer (D) is loose and is pushed toward lock nut (C) as far as possible.
- 3. Check that O-ring (A) is **NOT** on threads and adjust if necessary.
- 4. Apply hydraulic system oil to O-ring (A).

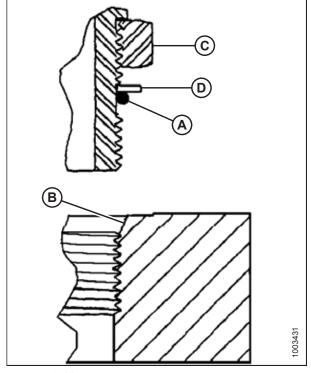


Figure 8.11: Hydraulic Fitting

- 5. Install fitting (B) into port until back up washer (D) and O-ring (A) contact part face (E).
- 6. Position angle fittings by unscrewing no more than one turn.
- 7. Turn lock nut (C) down to washer (D) and tighten to torque shown. Use two wrenches, one on fitting (B) and other on lock nut (C).
- 8. Check final condition of fitting.

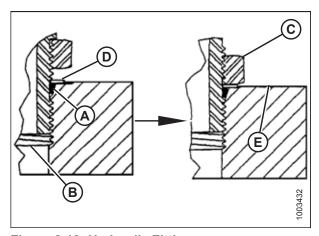


Figure 8.12: Hydraulic Fitting

Table 8.11 O-Ring Boss (ORB) Hydraulic Fittings (Adjustable)

0.455 1.00	TI 10: (1)	Torqu	e Value ⁷
SAE Dash Size	Thread Size (in.)	Nm	lbf·ft (*lbf·in)
-2	5/16–24	6–7	*53–62
-3	3/8–24	12–13	*106–115
-4	7/16–20	19–21	14–15
-5	1/2–20	21–33	15–24
-6	9/16–18	26–29	19–21
-8	3/4–16	46–50	34–37
-10	7/8–14	75–82	55–60
-12	1-1/16–12	120–132	88–97
-14	1-3/8–12	153–168	113–124
-16	1-5/16–12	176–193	130–142
-20	1-5/8–12	221–243	163–179
-24	1-7/8–12	270–298	199–220
-32	2-1/2-12	332–365	245–269

^{7.} Torque values shown are based on lubricated connections as in reassembly.

O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

- 1. Inspect O-ring (A) and seat (B) for dirt or obvious defects.
- 2. Check that O-ring (A) is **NOT** on threads and adjust if necessary.
- 3. Apply hydraulic system oil to O-ring.
- 4. Install fitting (C) into port until fitting is hand tight.
- 5. Torque fitting (C) according to values in Table 8.12, page 212.
- 6. Check final condition of fitting.

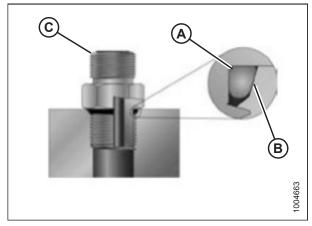


Figure 8.13: Hydraulic Fitting

Table 8.12 O-Ring Boss (ORB) Hydraulic Fittings (Non-Adjustable)

SAE Dash Size	Thread Circ (in)	Torque	e Value ⁸
SAE Dasii Size	Thread Size (in.)	Nm	lbf·ft (*lbf·in)
-2	5/16–24	6–7	*53–62
-3	3/8–24	12–13	*106–115
-4	7/16–20	19–21	14–15
-5	1/2–20	21–33	15–24
-6	9/16–18	26–29	19–21
-8	3/4–16	46–50	34–37
-10	7/8–14	75–82	55–60
-12	1-1/16–12	120–132	88–97
-14	1-3/8–12	153–168	113–124
-16	1-5/16–12	176–193	130–142
-20	1-5/8–12	221–243	163–179
-24	1-7/8–12	270–298	199–220
-32	2-1/2–12	332–365	245–269

214254 212 Revision A

^{8.} Torque values shown are based on lubricated connections as in reassembly.

O-Ring Face Seal (ORFS) Hydraulic Fittings

1. Check components to ensure that sealing surfaces and fitting threads are free of burrs, nicks, scratches, or any foreign material.

Figure 8.14: Hydraulic Fitting

- 2. Apply hydraulic system oil to O-ring (B).
- 3. Align tube or hose assembly so that flat face of sleeve (A) or (C) comes in full contact with O-ring (B).
- 4. Thread tube or hose nut (D) until hand-tight. The nut should turn freely until it is bottomed out.
- 5. Torque fittings according to values in Table *8.13*, page *213*.

NOTE:

If applicable, hold hex on fitting body (E) to prevent rotation of fitting body and hose when tightening fitting nut (D).

- 6. Use three wrenches when assembling unions or joining two hoses together.
- 7. Check final condition of fitting.

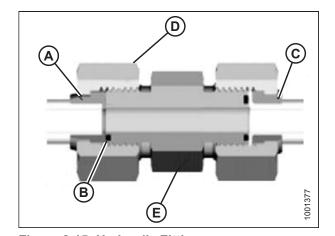


Figure 8.15: Hydraulic Fitting

Table 8.13 O-Ring Face Seal (ORFS) Hydraulic Fittings

SAE Dash Size	Thread Size (in.)	Tube O.D. (in.)	Torque Value ⁹	
SAE Dasii Size	Tilleau Size (iii.)	Tube O.D. (III.)	Nm	lbf∙ft
-3	Note ¹⁰	3/16	_	_
-4	9/16	1/4	25–28	18–21
-5	Note ¹⁰	5/16	_	_
-6	11/16	3/8	40–44	29–32
-8	13/16	1/2	55–61	41–45
-10	1	5/8	80–88	59–65
-12	1-3/16	3/4	115–127	85–94

^{9.} Torque values and angles shown are based on lubricated connection as in reassembly.

^{10.} O-ring face seal type end not defined for this tube size.

Table 8.13 O-Ring Face Seal (ORFS) Hydraulic Fittings (continued)

SAE Dash Size	Throad Size (in)	Tubo O.D. (in)	Torque Value ¹¹		Tube O.D. (in)	Value ¹¹
SAE Dasii Size	Thread Size (in.)	Tube O.D. (in.)	Nm	lbf∙ft		
-14	Note ¹⁰	7/8	_	-		
-16	1-7/16	1	150–165	111–122		
-20	1-11/16	1-1/4	205–226	151–167		
-24	1–2	1-1/2	315–347	232–256		
-32	2-1/2	2	510–561	376–414		

Tapered Pipe Thread Fittings

Assemble pipe fittings as follows:

- 1. Check components to ensure that fitting and port threads are free of burrs, nicks and scratches, or any form of contamination.
- 2. Apply pipe thread sealant (paste type) to external pipe threads.
- 3. Thread fitting into port until hand-tight.
- 4. Torque connector to appropriate torque angle. The Turns From Finger Tight (T.F.F.T.) values are shown in Table 8.14, page 214. Make sure that tube end of a shaped connector (typically 45° or 90°) is aligned to receive incoming tube or hose assembly. Always finish alignment of fitting in tightening direction. Never back off (loosen) pipe threaded connectors to achieve alignment.
- 5. Clean all residue and any excess thread conditioner with appropriate cleaner.
- 6. Assess final condition of fitting. Pay special attention to possibility of cracks to port opening.
- 7. Mark final position of fitting. If a fitting leaks, disassemble fitting and check for damage.

NOTE:

Overtorque failure of fittings may not be evident until fittings are disassembled.

Table 8.14 Hydraulic Fitting Pipe Thread

Tapered Pipe Thread Size	Recommended T.F.F.T.	Recommended F.F.F.T.
1/8–27	2–3	12–18
1/4–18	2–3	12–18
3/8–18	2–3	12–18
1/2–14	2–3	12–18
3/4–14	1.5–2.5	12–18
1–11 1/2	1.5–2.5	9–15
1 1/4–11 1/2	1.5–2.5	9–15
1 1/2–11 1/2	1.5–2.5	9–15
2–11 1/2	1.5–2.5	9–15

^{11.} Torque values and angles shown are based on lubricated connection as in reassembly.

8.2 Conversion Chart

Table 8.15 Conversion Chart

Outputite.	SI Units (Metric)		Factor	Inch-Pound Units	
Quantity	Unit Name	Abbreviation	- Factor	Unit Name	Abbreviation
Area	hectares	ha	x 2.4710 =	acres	acres
Flow	liters per minute	L/min	x 0.2642 =	US gallons per minute	gpm
Force	Newtons	N	x 0.2248 =	pounds force	lbf
l an othe	millimeters	mm	x 0.0394 =	inch	in.
Length	meters	m	x 3.2808 =	foot	ft.
Power	kilowatts	kW	x 1.341 =	horsepower	hp
	kilopascals	kPa	x 0.145 =		
Pressure	megapascals	MPa	x 145.038 =	pounds per square inch	psi
	bar (Non-SI)	bar	x 14.5038	oquaro mon	
_	Newton meters	Nm	x 0.7376 =	pound feet or foot pounds	lbf·ft
Torque	Newton meters	Nm	x 8.8507 =	pound inches or inch pounds	lbf·in
Temperature	Celsius	°C	(C° x 1.8) + 32 =	degrees Fahrenheit	°F
	meters per minute	m/min	x 3.2808 =	feet per minute	ft/min
Velocity	meters per second	m/s	x 3.2808 =	feet per second	ft/s
	kilometers per hour	km/h	x 0.6214 =	miles per hour	mph
	liters	L	x 0.2642 =	US gallons	US gal
Volume	milliliters	ml	x 0.0338 =	ounces	oz.
volume	cubic centimeters	cm ³ or cc	x 0.061 =	cubic inches	in. ³
Weight	kilograms	kg	x 2.2046 =	pounds	lb.

Index

A	break-in inspections104
API	
definitions19	С
APT	C
definitions19	center-links, See , hydraulic links
ASTM	definitions19
definitions19	CGVW
attaching/detaching	definitions19
A40-D SP windrower header	clearances
attaching to windrower	auger to stripper bar clearance 63, 161
hydraulic hose routing – M100, M105, M205	hold-down to knife section – DK
only51	reel tine to header pan clearance69
M100 or M10531	conditioners
M150, M155, or M155E436	conditioning
M20040	conditioner rolls
M20545	adjusting conditioner roll gap77
detaching A40-D from windrower56	adjusting conditioner roll tension78
m-series windrower31	conditioner roll alignment180
A40-DX SP windrower header	roll timing181
detaching A40-DX from windrower28	forming shield, See forming shields
M1 series windrower25	hydraulic motor, See hydraulic motors
	conversion charts215
auger and auger drives A40-D145	cutting heights
	setting72
A40-DX	Setting72
auger pan	
auger pan extensions for grass seed	D
special89	D
adjusting extensions90	definition of terms19
straightening auger pan159	definitions19
grass seed special auger design88	deflectors
replacing rubber fingers160	forming shield
stripper bar161	assembling169
installing front stripper bar extensions162	disassembling167
removing stripper bar161	installing170
replacing stripper bar162	self-propelled windrower headers
auger positions63	removing shield166
adjusting	rear deflector (fluffer shield)
auger fore-aft position64	positioning rear deflector81
auger vertical position65	side deflectors
auger speeds	positioning side deflectors80
adjusting63	dividers, See tall crop dividers
	DK
_	definitions19
В	drive systems
haaringa 440	drive systems
bearings	
belts, See knife drive belts	opening and closing driveshields
knife drive belt	drying agents97
removing LH side139	
bolts	
definitions19	

E	windrow forming rods	91
alactrical	ground speed	
electrical	guards, See stub guards	
maintaining the electrical system188	aligning guard	120
endshields	description	
opening and closing endshields101	grass seed special, See guards	
	pointed guards	
г	adjusting hold-down – DK	128
F	replacing pointed center guard – DK	
feed pans	replacing pointed guard	
adjusting position76	stub guard conversion kit	
FFFT	stub guards	
definitions19	adjusting center hold-down – DK	128
finger tight	replacing center stub guard – DK	
definitions19	GVW	
float	definitions	10
adjusting for m series73	dominiono	
adjusting for m1 series73		
floats, See header float	Н	
fluffer shields, See deflectors	••	
fluids and lubricants223	hay conditioners, See conditioning	
forming rods	roll timing	181
	haying tips	96
grass seed special	chemical drying agents	
forming shields	curing	
assembling forming shield	driving on windrows	
disassembling forming shield	raking and tedding	
installing forming shield170	topsoil moisture	
positioning side forming shields80	weather and topography	
removing forming shield – A40-D166	windrow characteristics	
removing forming shield – A40-DX166	header angles	
	adjusting	71
	header float	
G	checking float	73
gauge rollers	float operating guidelines	
installing186	removing and restoring float	
kit	header operation	
removing	header float	
setting cutting height72	checking float	73
gearboxes	float operating guidelines	
A40-D conditioner drive gearbox	removing and restoring float	
	headers	
installing		24
removing	header specifications	2
A40-DX conditioner drive gearbox	hex keys	40
installing	definitions	
removing	hold-downs	
changing conditioner gearbox oil	adjusting on header with pointed guards – Dh	
glossary19	header	128
grass seed special88	adjusting on header with stub guards	
auger pan extensions89	center hold-down – DK header	
adjusting extensions90	grass seed special	88
seven-bat reel (standard)89	hoses	
special auger design88	checking for leaks	113
stub guards and hold-downs88	hydraulic drive hoses	

routing for MT series only25	Knives	
routing for M100, M105, M205 only51	installing	115
reverser valve jumper hose	knifehead bearings	
routing on M150, M155, M155E4, M20050	installing	117
hydraulic motors	removing	
installing hydraulic motor on gearbox174	3	
removing hydraulic motor from gearbox		
hydraulics	L	
checking for leaks 113	_	
	lean bar position	63
fittings	lights	
flare-type	replacing light bulbs	188
O-ring boss (ORB) adjustable210	lock-outs	
O-ring boss (ORB) non-adjustable212	lift cylinder lock-outs	61
O-ring face seal (ORFS)213	lubrication	
tapered pipe thread fittings214	lubrication points	
hydraulic safety6	drivelines	
servicing hydraulics113		
• ,	hay conditioner	
	windrower header	
K	recommended fluids and lubricants	223
knife and knife drives		
knife and knife drives cutterbar114	M	
	111	
stub guards and hold-downs88	M100/M105 SP windrowers	
knife	attaching A40-D header	31
adjusting knife timing – DK header134	M150, M155, and M155E4 SP windrowers	
removing spare knife from storage 117	attaching A40-D header	36
replacing knife section114	M200 SP windrowers	
knife drive	attaching A40-D header	40
windrower header137	M205 SP windrowers	
knife guards, See guards	attaching A40-D header	15
knifehead bearing	maintenance and servicing	
removing116		98
unplugging conditioner and knife86	See also maintenance	404
knife drive belts	break-in inspection	
windrower header	greasing procedure	
left side	maintenance record	
adjusting timing belt tension138	maintenance requirements	
	preparing for servicing	99
adjusting v-belt tension	preseason checks	104
installing double V-belts	maintenance safety	5
installing timing belt140	mechanical troubleshooting	200
removing double V-belts137	metric bolts	
right side	torque specifications	205
adjusting timing belt tension142	model numbers	
installing timing belt143	moisture	
removing timing belt142	motors	
knife drive boxes129		
changing oil133	hydraulic motor	474
installing knife drive box131	installing on gearbox	
installing pulley	removing from gearbox	173
mounting bolts		
removing knife drive box	M	
	N	
removing pulley	NPT	
knife guards, See guards	definitions	10
	ueiiiiiioiis	18

0	R
operating windrower header25	raking97
recommended operating settings82	reel and reel drives
variables affecting performance62	replacement reel bat kit190
auger fore-aft position64	seven-bat reel
auger position63	standard on grass seed special89
auger speed63	windrower header
auger vertical position65	reel drive145
conditioner roll alignment180	reel positions
conditioner roll gap77	adjusting
conditioner roll tension78	reel position66
conditioner roll timing181	reel fore-aft position66
cutting height72	reel tine to header pan clearance69
feed pan and rock drop tine position76	reel vertical position67
float	reel speeds
M series73	adjusting63
M1 series73	reel tines and tine bar bearings
forming shield position80	A40-D SP windrower header
ground speed92	replacing – disc #2154
header angles71	replacing opposite cam – section Y156
lean bar63	replacing tine bar extension – section Z 158
rear deflector position81	A40-DX SP windrower header
reel fore-aft position66	replacing center section X154
reel position66	replacing opposite cam – section Y
reel speed63	replacing tine bar extension – section Z 158
reel tine to header pan clearance69	adjusting reel tine aggressiveness70
reel vertical position67	windrower header146
side deflector position80	adjusting rock drop tine position76
tall crop dividers, See see tall crop dividers	replacing – disc #2150
tine aggressiveness70	replacing cam end – disc #1146
options	reference
additional gauge roller189	header specifications21
additional skid shoes189	maintenance requirements102
replacement reel bat kits190	reverser valve jumper hose
stub guard conversion kit190	routing hose – M150, M155, M155E4, M20050
tall crop divider kit191	rock drop tine position
ORB	adjusting position76
definitions19	RoHS
owner/operator responsibilities16	definitions19
	roll alignment180
	roll gap77
P	roll tension
	roll timing181
pointed guards, See guards	rpm
power take-off (PTO)	definitions
PTO speedix	rubber fingers160
preseason checks	
pulleys	
installing	S
removing132	
	SAE
	bolt torques
	definitions19
	safety

alert symbols	1 torque specifications203	ś
general safety	3 flare-type hydraulic fittings208	3
hydraulic safety	6 metric bolt specifications205	í
maintenance and servicing	5 bolting into cast aluminum	3
operational		
owner/operator responsibilities	16 (adjustable)210)
safety sign decals		
installing decals	7 adjustable)212)
interpreting decals		3
locations on SP windrower headers	8 SAE bolt torque specifications203	3
signal words	2 tapered pipe thread fittings214	ŀ
screws	torque tensions	
definitions	19 definitions19)
sealed bearings	transporting A40-D SP windrower header60)
installing1	·	
serial numbers	. •	
servicing, See maintenance and servicing	header performance195	
seven-bat reels	mechanical issues200	
standard on grass seed special		
sickles, See knife and knife drives	definitions19)
side deflectors		
positioning side forming shields	80	
SK	Ü	
definitions	19	
skid shoes	unloading and assembly instructions193	
additional skid shoes (optional)1	unplugging conditioner and knife86	ì
replacing skid shoe wear plate1		
setting cutting height	70	
specifications	¹² W	
fluids and lubricants2	23 washers	
header		ì
torque specifications20		
storage1		,
stripper bars	attaching A40-D to m-series windrower31	
description1		
•		
installing front extensions		
removing stripper bar1		
replacing stripper bar1		
	auger pan extensions	
т	adjusting extensions90	
1	seven-bat reel (standard)89	
tall crop dividers	93 special auger design88	
adjusting dividers	93 Stub guards and noid-downsoc	
removing dividers	windrow forming rods91	J
tall crop divider kit1	nydraulic nose routing	_
tedding	o7 for Mili series only23	
TFFT	10r W1100, W1105, W205 Only51	
definitions	transporting A40-D with SP windrower60	
topography	of transporting A40-DX with SP windrower30	
torque	troubleshooting mechanical issues200	
definitions	troubleshooting performance issues	
	unplugging conditioner and knife86	j
torque angles	windrow forming rods91	l
definitions	windrows	

driving on windrows	97
windrow characteristics	96
wobble boxes, See knife drive boxes	

Recommended Fluids and Lubricants

Your machine can operate at top efficiency **ONLY** if clean lubricants are used.

- Use clean containers to handle all lubricants.
- Store in an area protected from dust, moisture, and other contaminants.

Lubricant	Specification	Description	Use	Capacities
Grease	SAE Multi- Purpose	High temperature extreme pressure (EP2) performance with 1% max molybdenum disulphide (NLGI Grade 2). Lithium base.	As required unless otherwise specified	_
Grease	SAE Multi- Purpose	High temperature extreme pressure (EP) performance with 10% max molybdenum disulphide (NLGI Grade 2). Lithium base.	Driveline slip-joints	_
Gear lubricant	SAE 85W-140	API service class GL-5	Knife drive box	2.2 liters (2.3 quarts)
Gear lubricant	SAE 85W-140	API service class GL-5	Conditioner drive gearbox	1 liter (1.06 quarts)
Hydraulic oil	SAE 15W-40	Compliant with SAE specs for API class SJ And CH-4 engine oil.	Lift and header drive systems reservoir	126 liters (33 gal US)

MacDon Industries Ltd.

680 Moray Street Winnipeg, Manitoba Canada R3J 3S3 t. (204) 885-5590 f. (204) 832-7749

MacDon, Inc.

10708 N. Pomona Avenue Kansas City, Missouri United States 64153-1924 t. (816) 891-7313 f. (816) 891-7323

MacDon Australia Pty. Ltd.

A.C.N. 079 393 721 P.O. Box 243, Suite 3, 143 Main Street Greensborough, Victoria, Australia 3088 t. 03 9432 9982 f. 03 9432 9972

MacDon Brasil Agribusiness Ltda.

Rua Grã Nicco, 113, sala 202, B. 02 Mossunguê, Curitiba, Paraná CEP 81200-200 Brasil t. +55 (41) 2101-1713 f. +55 (41) 2101-1699

LLC MacDon Russia Ltd.

123317 Moscow, Russia 10 Presnenskaya nab, Block C Floor 5, Office No. 534, Regus Business Centre t. +7 495 775 6971 f. +7 495 967 7600

CUSTOMERS **MacDon.com**

DEALERS Portal.MacDon.com

Trademarks of products are the marks of their respective manufacturers and/or distributors.

Printed in Canada